Montel's theorem

Harold P. Boas

Texas A\&M University
boas@tamu.edu

He wrote Lesons sur les familles normales de fonctions analytiques et leurs applications, Paris, 1927.

Montel's fundamental normality criterion

Theorem. Let G be a domain in \mathbb{C}, let α and β be two distinct complex numbers, and let \mathcal{F} be the set of holomorphic functions in G whose range omits the two values α and β. Then \mathcal{F} is a normal family in the extended sense (that is, the constant ∞ is an allowed limit).

Reductions:

- We may assume that the two omitted values are 0 and 1. (Consider $(f(z)-\alpha) /(\beta-\alpha)$.)
- We may assume that the domain G is the unit disc. (Normality is a local property.)
- It suffices to prove normality of the smaller family \mathcal{F}_{1} such that $\mathcal{F}_{1}=\{f \in \mathcal{F}:|f(0)| \leq 1\}$. (If $f \notin \mathcal{F}_{1}$, then $1 / f \in \mathcal{F}_{1}$.)

Reminders on the modular function λ

The modular function λ maps the open upper half-plane onto $\mathbb{C} \backslash\{0,1\}$. The modular function λ is invariant under the action of the congruence subgroup of the modular group. That is, $\lambda\left(\frac{a z+b}{c z+d}\right)=\lambda(z)$ when a, b, c, and d are integers such that $a d-b c=1$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \equiv\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \bmod 2$.

fundamental domain

Apply the monodromy theorem

If f maps the unit disc into $\mathbb{C} \backslash\{0,1\}$, then $\lambda^{-1} \circ f$ has a local branch defined near $f(0)$, and this function element admits unrestricted analytic continuation in the disc.

By the monodromy theorem, there exists a function \widehat{f} from the unit disc into the upper half-plane such that $\lambda \circ \widehat{f}=f$.

First subsequence

Suppose $\left\{f_{n}: n \in \mathbb{N}\right\}$ is a sequence of functions in the family \mathcal{F}_{1}. We need to produce a normally convergent subsequence.

Since the numbers $f_{n}(0)$ lie in a bounded set, there is a subsequence $\{n(k): k \in \mathbb{N}\}$ such that the numbers $f_{n(k)}(0)$ converge to some complex number L.

Suppose first that $L \neq 0$ and $L \neq 1$. (We will return to the special cases later.) We fix a branch of λ^{-1} in a neighborhood of L and use it to define the functions $\widehat{f_{n(k)}}$ consistently.

Second subsequence

Since each $\widehat{f_{n(k)}}$ has range contained in the upper half-plane, the sequence $\left\{\widehat{f_{n(k)}}: k \in \mathbb{N}\right\}$ is a normal family. Let $\{n(k(j)): j \in \mathbb{N}\}$ be a subsequence such that the functions $\widehat{f_{n(k(j))}}$ converge normally to a limit function g.

The range of the limit function g is certainly contained in the closed upper half-plane. Since $g(0)=\lambda^{-1}(L)$, the open mapping principle implies that the range of g is contained in the open upper half-plane.

Consequently, $\lambda \circ g$ is defined, and

$$
f_{n(k(j))}=\lambda \circ \widehat{f_{n(k(j))}} \xrightarrow{j \rightarrow \infty} \lambda \circ g .
$$

We are done in the main case.

Handle the remaining cases

Suppose $f_{n(k)}(0) \xrightarrow{k \rightarrow \infty} 1$. Let h_{k} be a holomorphic square-root of the non-vanishing function $f_{n(k)}$ with the branch chosen such that $h_{k}(0) \xrightarrow{k \rightarrow \infty}-1$. Clearly the range of each function h_{k} omits the values 0 and 1 .

The preceding analysis applies to the sequence $\left\{h_{k}: k \in \mathbb{N}\right\}$ and shows that there is a normally convergent subsequence $\left\{h_{k(j)}: j \in \mathbb{N}\right\}$. Squaring shows that the sequence $\left\{f_{n(k(j))}: j \in \mathbb{N}\right\}$ converges.

Finally, suppose that $f_{n(k)}(0) \xrightarrow{k \rightarrow \infty} 0$. The preceding case applies to the functions $1-f_{n(k)}$.
We are done.

