Exercise on the modular group

The modular group is the group of linear fractional transformations

$$
z \mapsto \frac{a z+b}{c z+d}, \quad a, b, c, d \in \mathbb{Z}, \quad a d-b c=1
$$

This group may be viewed as a group of matrices $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ with the understanding that a matrix and its negative are identified (since $\frac{a z+b}{c z+d}=\frac{-a z-b}{-c z-d}$). The group is known as $P S L(2, \mathbb{Z})$, where \mathbb{Z} indicates integer entries, the number 2 indicates 2×2 matrices, the letter L stands for "linear", the letter S stands for "special" (meaning determinant equal to 1), and the letter P stands for "projective" (referring to the identification of a matrix and its negative).

In the textbook you read about the congruence subgroup, which consists of matrices that are congruent modulo 2 to the identity matrix. This exercise addresses instead the full modular group.

1. Show that the translation $z \mapsto z+1$ (corresponding to the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$) and the mapping $z \mapsto z /(z+1)$ (corresponding to the matrix $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$) generate the modular group. (In other words, the smallest group containing these two transformations is equal to the modular group.)

The elements of the modular group map the upper half-plane to itself. When z is an arbitrary point in the upper half-plane, the orbit of z is the set of all points $\varphi(z)$ obtained as φ runs over the elements of the modular group. A fundamental domain for the modular group is a set consisting of one point from each orbit. ${ }^{1}$

2. Show that the shaded region indicated in the figure above is a fundamental domain for the modular group. The region is the union of

$$
\left\{z: \operatorname{Im} z>0 \text { and }|z|>1 \text { and }-\frac{1}{2}<\operatorname{Re} z \leq \frac{1}{2}\right\}
$$

and the circular arc $\left\{e^{i \theta}: \pi / 3 \leq \theta \leq \pi / 2\right\}$.

[^0]
[^0]: ${ }^{1}$ The meaning of the word "domain" here differs from our standard usage, for a fundamental domain is not necessarily either connected or open.

