Exercise on overconvergence

If a power series has radius of convergence equal to 1, then the sequence of partial sums diverges at every point z of modulus greater than 1. The power series is called *overconvergent* if some *subsequence* of partial sums converges at some point z with modulus greater than 1.

This exercise applies Runge's theorem to demonstrate the existence of a "universal" power series that overconverges to every holomorphic function.¹ More precisely, there exists a power series $\sum_{j=0}^{\infty} c_j z^j$ with radius of convergence 1 and with the following remarkable property. For every closed disc Δ that is disjoint from the closed unit disc $\overline{D}(0, 1)$, and for every function f that is holomorphic in an open neighborhood of Δ , there exists an increasing sequence of positive integers $\{n(k)\}_{k=1}^{\infty}$ such that the partial sums $\sum_{j=0}^{n(k)} c_j z^j$ converge uniformly on Δ to f(z) as $k \to \infty$.

- **1.** Use countability arguments to show the following.
 - (a) Let \mathcal{P} be the set of holomorphic polynomials whose coefficients are complex numbers with rational real part and rational imaginary part. Then \mathcal{P} is a countable set.
 - (b) There exists a countable set \mathcal{B} of closed discs, each disjoint from the closed unit disc $\overline{D}(0, 1)$, such that every closed disc that is disjoint from the closed unit disc $\overline{D}(0, 1)$ has an open neighborhood that is contained in infinitely many of the discs in \mathcal{B} .
 - (c) The Cartesian product $\mathcal{B} \times \mathcal{P}$ can be enumerated as a sequence $\{(B_j, p_j)\}_{j=1}^{\infty}$, where each $B_j \in \mathcal{B}$ and each $p_j \in \mathcal{P}$.
- 2. Use Runge's theorem to construct inductively a sequence of polynomials $\{q_j\}_{j=1}^{\infty}$ such that every coefficient of every q_j has modulus less than 1, the lowest power of z in $q_j(z)$ is larger than the highest power of z in $q_{j-1}(z)$, and max $\left\{ \left| p_j(z) \sum_{m=1}^j q_m(z) \right| : z \in B_j \right\} < 1/2^j$.
- **3.** Show that the series $\sum_{j=1}^{\infty} q_j(z)$, viewed as a power series, has the required properties.

Theory of Functions of a Complex Variable II

¹Such examples were constructed independently by Wolfgang Luh [Approximation analytischer Funktionen durch überkonvergente Potenzreihen und deren Matrix-Transformierten, *Mitteilungen aus dem Mathematischen Seminar Giessen* **88** (1970)] and by Charles K. Chui and Milton N. Parnes [Approximation by overconvergence of a power series, *Journal of Mathematical Analysis and Applications* **36** (1971) 693–696].