In this assignment, you will construct the Bergman kernel function, which is the archetype of so-called reproducing kernels.

When Ω is a bounded domain in \mathbb{C} , the notation $A^2(\Omega)$ denotes the set of analytic functions on Ω that have square-integrable modulus. This set of functions is a normed vector space:

$$||f||$$
 is defined to be $\left(\int_{\Omega} |f(z)|^2 d\operatorname{Area}_z\right)^{1/2}$.

The hypothesis that Ω is bounded guarantees that there are some nontrivial functions in $A^2(\Omega)$: namely, all polynomials in z belong to this space. The Cauchy–Schwarz inequality for integrals implies that this normed space additionally is a complex inner-product space:

$$\langle f, g \rangle$$
 is defined to be $\int_{\Omega} f(z) \overline{g(z)} d \operatorname{Area}_{z}$.

It will follow from the discussion below that this inner product space is complete, so $A^2(\Omega)$ is a Hilbert space; in fact, $A^2(\Omega)$ is a closed subspace of $L^2(\Omega)$.

- 1. a) Use the mean-value property of analytic functions to show that if f is analytic in a neighborhood of the closed disk $\overline{D}(w,r)$, then f satisfies the area-mean-value property: namely, $f(w) = \frac{1}{\pi r^2} \int_{D(w,r)} f(z) d\operatorname{Area}_z$.
 - b) Use the Cauchy–Schwarz inequality for integrals to deduce that if w is a point of Ω whose distance from the boundary of Ω exceeds r, then $|f(w)| \leq \frac{1}{r\sqrt{\pi}} ||f||$.
- 2. Deduce that the unit ball of $A^2(\Omega)$ is a normal family of analytic functions.
- 3. Let w be an arbitrary point of Ω . Show that among the functions f in $A^2(\Omega)$ for which f(w) = 1, there is one function, call it f_w , of minimal norm. Why is f_w unique?
- 4. Show that if g is a function in $A^2(\Omega)$ such that g(w) = 0, then $\langle g, f_w \rangle = 0$. Hint: for an arbitrary nonzero complex number λ , the function $f_w + \lambda g$ is an unsuccessful candidate for the solution of the extremal problem in the preceding part.
- 5. Show that if *h* is an arbitrary function in $A^2(\Omega)$, then

$$\langle h, f_w \rangle = h(w) \langle 1, f_w \rangle = h(w) \langle f_w, f_w \rangle.$$

Hint: if g(z) = h(z) - h(w), then the preceding part applies to g.

6. Define the Bergman kernel function K(w, z) to be $\overline{f_w(z)} / ||f_w||^2$. Show that

$$\int_{\Omega} K(w, z)h(z) \, d\text{Area}_z = h(w) \qquad \text{for every } h \text{ in } A^2(\Omega).$$

Remark: An alternate way to construct f_w and hence K(w, z) is to apply the Riesz representation theorem to the point-evaluation functional. If you know the proof of that theorem, then you may recognize some of the steps above.