In this assignment, you will construct the Bergman kernel function, which is the archetype of so-called reproducing kernels.

When Ω is a bounded domain in \mathbb{C}, the notation $A^{2}(\Omega)$ denotes the set of analytic functions on Ω that have square-integrable modulus. This set of functions is a normed vector space:

$$
\|f\| \quad \text { is defined to be } \quad\left(\int_{\Omega}|f(z)|^{2} d \text { Area }_{z}\right)^{1 / 2}
$$

The hypothesis that Ω is bounded guarantees that there are some nontrivial functions in $A^{2}(\Omega)$: namely, all polynomials in z belong to this space. The Cauchy-Schwarz inequality for integrals implies that this normed space additionally is a complex inner-product space:

$$
\langle f, g\rangle \quad \text { is defined to be } \quad \int_{\Omega} f(z) \overline{g(z)} d \mathrm{Area}_{z} .
$$

It will follow from the discussion below that this inner product space is complete, so $A^{2}(\Omega)$ is a Hilbert space; in fact, $A^{2}(\Omega)$ is a closed subspace of $L^{2}(\Omega)$.

1. a) Use the mean-value property of analytic functions to show that if f is analytic in a neighborhood of the closed disk $\bar{D}(w, r)$, then f satisfies the area-mean-value property: namely, $f(w)=\frac{1}{\pi r^{2}} \int_{D(w, r)} f(z) d \mathrm{Area}_{z}$.
b) Use the Cauchy-Schwarz inequality for integrals to deduce that if w is a point of Ω whose distance from the boundary of Ω exceeds r, then $|f(w)| \leq \frac{1}{r \sqrt{\pi}}\|f\|$.
2. Deduce that the unit ball of $A^{2}(\Omega)$ is a normal family of analytic functions.
3. Let w be an arbitrary point of Ω. Show that among the functions f in $A^{2}(\Omega)$ for which $f(w)=1$, there is one function, call it f_{w}, of minimal norm. Why is f_{w} unique?
4. Show that if g is a function in $A^{2}(\Omega)$ such that $g(w)=0$, then $\left\langle g, f_{w}\right\rangle=0$.

Hint: for an arbitrary nonzero complex number λ, the function $f_{w}+\lambda g$ is an unsuccessful candidate for the solution of the extremal problem in the preceding part.
5. Show that if h is an arbitrary function in $A^{2}(\Omega)$, then

$$
\left\langle h, f_{w}\right\rangle=h(w)\left\langle 1, f_{w}\right\rangle=h(w)\left\langle f_{w}, f_{w}\right\rangle
$$

Hint: if $g(z)=h(z)-h(w)$, then the preceding part applies to g.
6. Define the Bergman kernel function $K(w, z)$ to be $\overline{f_{w}(z)} /\left\|f_{w}\right\|^{2}$. Show that

$$
\int_{\Omega} K(w, z) h(z) d \operatorname{Area}_{z}=h(w) \quad \text { for every } h \text { in } A^{2}(\Omega)
$$

Remark: An alternate way to construct f_{w} and hence $K(w, z)$ is to apply the Riesz representation theorem to the point-evaluation functional. If you know the proof of that theorem, then you may recognize some of the steps above.

