Math 618

In this assignment, you will deepen your understanding of the concept of the order of an entire function by comparing three definitions.

Recall that $M_f(r)$, or M(r) for short, denotes $\max\{|f(z)| : |z| \le r\}$. If f is a nonconstant entire function, then Liouville's theorem implies that $M(r) \to \infty$ as $r \to \infty$. The order of f characterizes how fast M(r) goes to ∞ .

Consider the following three numbers associated to a nonconstant entire function f whose Maclaurin series is $\sum_{n=0}^{\infty} c_n z^n$:

$$\rho := \inf \left\{ t \in \mathbb{R} : \lim_{r \to \infty} \frac{\log M(r)}{r^t} = 0 \right\}$$
$$\lambda := \limsup_{r \to \infty} \frac{\log \log M(r)}{\log r}$$
$$\beta := \limsup_{n \to \infty} \frac{n \log n}{\log \frac{1}{|c_n|}}.$$

(In the definition of β , interpret the fraction as 0 when $c_n = 0$.) Your main task is to show that $\rho = \lambda = \beta$.

- 1. To check that you understand the definitions, verify by explicit calculation that when $f(z) = ze^{z}$, the three numbers ρ , λ , and β all are equal to 1.
- 2. To see that there is some point in having different formulations of the concept of order, let *s* be an arbitrary positive real number, and suppose that

$$f(z) = \sum_{n=0}^{\infty} \frac{z^n}{(n!)^{1/s}}$$

Use the third definition to show that f is an entire function of order s. (Thus there exists an entire function of an arbitrary, prescribed positive order.)

Now let f be a general nonconstant entire function, and fix a positive ε .

- 3. Observe that $\log M(r) < r^{\rho+\varepsilon}$ for sufficiently large *r*. Deduce that $\lambda \leq \rho + \varepsilon$.
- 4. Observe that $\log M(r) < r^{\lambda+\varepsilon}$ for sufficiently large *r*. Deduce that $\rho \leq \lambda + 2\varepsilon$.
- 5. Observe that $M(r) < e^{r^{\lambda+\varepsilon}}$ for sufficiently large r. Bound $|c_n|$ for large n by applying Cauchy's estimate with $r = n^{1/(\lambda+\varepsilon)}$, and deduce that $\beta \le \lambda + \varepsilon$.
- 6. Show that $|c_n| < n^{-n/(\beta+\varepsilon)}$ for sufficiently large *n*. Observe that $M(r) \le \sum_{n=0}^{\infty} |c_n| r^n$. By splitting the sum where $n \approx (2r)^{\beta+\varepsilon}$, show that $\lambda \le \beta + 2\varepsilon$.

Finally let $\varepsilon \downarrow 0$ to deduce that $\rho = \lambda = \beta$.