1. Prove that if a is a complex number of modulus less than 1 , then the function that sends z to $\frac{a-z}{1-\bar{a} z}$ is a self-inverse holomorphic bijection of the open unit disk, $\{z \in \mathbb{C}:|z|<1\}$. (See Exercises 1.22 and 25.5 in the textbook; also somewhat relevant is the Schwarz lemma on page 119.)
[Holomorphic functions that have holomorphic inverses are biholomorphic. A biholomorphic map from a domain onto itself is a holomorphic automorphism of the domain. It follows from the Schwarz lemma that the automorphisms of the unit disk are the maps indicated above and their compositions with rotations.]
2. Prove that if $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of nonzero points of the open unit disk (repetitions are allowed), then the infinite product

$$
\prod_{n=1}^{\infty} \frac{\left|a_{n}\right|}{a_{n}} \cdot \frac{a_{n}-z}{1-\overline{a_{n}} z}
$$

converges absolutely and uniformly on compact subsets of the open unit disk if and only if the infinite series $\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)$ converges.
[Such a product is called a Blaschke product after Wilhelm Blaschke (1885-1962), who worked mainly in geometry. Blaschke directed the dissertation of the great differential geometer Shiing-Shen Chern (1911-2004).]
3. Deduce that there exists a bounded holomorphic function on the open unit disk that is singular at every point of the boundary. (A holomorphic function is singular at a boundary point p if there exists no disk centered at p to which the function extends holomorphically.)

