Theorems

State a theorem from this course named for a mathematician whose name starts with the letter
(1) M ,
(2) P,
(3) R,
(4) S,
(5) W.

Examples

For each of the following items, either supply an example of a function with the indicated properties, or prove that no such function can exist.
(6) A linear fractional transformation (Möbius transformation) that fixes exactly one point of $\mathbb{C} \cup\{\infty\}$ (the extended complex numbers).
(7) A biholomorphic mapping from $\mathbb{C} \backslash\{z \in \mathbb{C}:|z| \leq 1\}$ (the complement of the closed unit disk) onto $\mathbb{C} \backslash\{0\}$ (the punctured plane).
(8) A nonconstant holomorphic function f on $\{z \in \mathbb{C}:|z|<1\}$ (the unit disk) such that the sequence of iterates $f \circ f, f \circ f \circ f, \ldots$ converges normally to a constant function.
(9) A holomorphic function on $\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ (the upper half-plane) that is not the normal limit of a sequence of polynomials.
(10) A nonpolynomial entire function f such that $\lim _{r \rightarrow \infty}\left|f\left(r e^{i \theta}\right)\right|=\infty$ for every angle θ.

