Exercise on approximation

The algebraic numbers are the complex numbers that are zeroes of nonconstant polynomials having rational coefficients. Examples are $\sqrt[3]{2}$ (a zero of the polynomial $z^{3}-2$) and $-1+i$ (a zero of the polynomial $z^{2}+2 z+2$). Complex numbers that are not algebraic are called transcendental. Since the algebraic numbers form a countable set, "most" numbers are transcendental, but determining whether a specific number is transcendental can be a daunting task. Two especially famous numbers known to be transcendental are e (proved by Hermite ${ }^{1}$) and π (proved by Lindemann ${ }^{2}$).

The transcendental number π is nonetheless a zero of some nonconstant entire function having a Maclaurin series with rational coefficients (the sine function, for instance). What about e ? Viewing an entire function as a "polynomial of infinite degree," one might ask which numbers are zeroes of nonconstant entire power series having rational coefficients. The amusing answer, due to Hurwitz, ${ }^{3}$ is that every complex number has this property; moreover, the entire function can be chosen to have only one zero. ${ }^{4}$

Your task is to show that if c is an arbitrary complex number, then there is an entire function h such that the Maclaurin series of $(z-c) e^{h(z)}$ has rational coefficients (in the sense that the real part and the imaginary part of each coefficient are rational numbers). Moreover, if the number c happens to be real, then the coefficients of the series can be taken to be real rational numbers.

1. Show that if f is holomorphic in a neighborhood of the origin, then f can be expressed as $g-h$, where g is holomorphic in a neighborhood of the origin and has rational Maclaurin coefficients, and h is entire.
2. If $c \neq 0$, then $z-c$ can be written locally in a neighborhood of the origin in the form $e^{f(z)}$. What can you deduce from the preceding step?
[^0]
[^0]: ${ }^{1}$ Charles Hermite, Sur la fonction exponentielle, Comptes rendus de l'Académie des Sciences 77 (1873) 18-24, 74-79, 226-233, 285-293.
 ${ }^{2}$ F. Lindemann, Ueber die Zahl π, Mathematische Annalen 20 (1882) 213-225.
 ${ }^{3}$ A. Hurwitz, Über beständig convergirende Potenzreihen mit rationalen Zahlencoefficienten und vorgeschriebenen Nullstellen, Acta Mathematica 14 (1890) 211-215.
 ${ }^{4}$ There is a standard theorem about zeroes of holomorphic functions that is commonly known as "Hurwitz's theorem" (see the index of the textbook), but that theorem concerns a different topic.

