
Math 618 Theory of Functions of a Complex Variable II Spring 2015

Exercise on combining the Weierstrass and
Mittag-Leffler theorems

Although the proof of the Weierstrass theorem (about prescribed zeroes) is multiplicative, and
the proof of the Mittag-Leffler theorem (about prescribed poles and principal parts) is additive,
the two theorems can be combined into a unified statement, as Mittag-Leffler himself showed.1
Suppose G is an open set in ℂ, and (an)∞n=1 is a discrete sequence of distinct points in G. (The

word “discrete” here means that the sequence has no accumulation point inside G.) Let (pn)∞n=1
and (qn)∞n=1 be two sequences of polynomials. The claim is that there exists a meromorphic func-
tion f on G having no zeroes or poles outside of the sequence (an) and such that for each n, the
difference

f (z) − pn(1∕(z − an)) − qn(z − an)

has (a removable singularity and) a zero at an of order at least 1+deg qn. In other words, you can
prescribe not only the principal part of the Laurent series (the terms having negative exponents)
but also finitely many terms having positive exponents. This statement generalizes Theorem 13.5
(holomorphic interpolation) from the textbook (which addresses the case that the polynomials pn
are identically zero).

Your task is to prove this statement by applying the versions that you already know of the
Weierstrass theorem and the Mittag-Leffler theorem. Here is a suggestion for how the argument
could go.

As a first step, use the Weierstrass theorem to find a holomorphic function g having for each n
a zero at an of order 1 + deg qn. Then use the Mittag-Leffler theorem to find a meromorphic
function ℎ having for each n the same principal part at an as the quotient

pn(1∕(z − an)) + qn(z − an)
g(z)

.

The first try is to set f1 equal to the product gℎ. That procedure yields a proof of Theorem 13.5
(and more), bypassing the linear-algebra calculation in the textbook.

But you are not yet done, for the standard version of theMittag-Leffler theorem does not control
the location of zeroes. The function f1 just determined might have some extraneous zeroes lying
outside the sequence (an). Some additional trickery is needed to circumvent this difficulty.

Next apply the Weierstrass theorem to create a meromorphic function f2 having zeroes and
poles of the same orders as f1 at the points of the sequence (an) and having no other zeroes or
poles. (The Weierstrass theorem does not control the coefficients of the Laurent series of f2,
however.) Locally near each point an, you can define a holomorphic branch of log(f1∕f2), and by
the previous step there is a holomorphic function ' on G that agrees to suitably high order (how
high?) at each an with log(f1∕f2). Set f equal to f2e'.

1G. Mittag-Leffler, “Sur la représentation analytique des fonctions monogènes uniformes d’une variable indépen-
dante,” Acta Mathematica 4 (1884) 1–79.
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