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There are three general themes for this semester:
• convergence and approximation in the space of holomorphic functions,
• conformal mapping,
• the range of holomorphic functions.

The first item includes infinite products, the Weierstrass factorization theorem, Mittag-Leffler’s
theorem, normal families, and Runge’s approximation theorem. The second item includes the
Riemann mapping theorem and the theory of Möbius transformations. The third item includes
Picard’s theorems. The emphasis this semester is on techniques that are, at least in principle,
constructive.
Here is a starting point for the problem of approximation.

Weierstrass approximation theorem, 1885

Theorem. Every continuous real-valued function on the interval [0, 1] can be approximated uni-
formly by polynomials. In other words, the polynomials are dense in the function space C[0, 1],
provided with the uniform norm.

Question: What about approximation of continuous functions on an arbitrary compact subset
of ℝ? The answer is still affirmative, for the Tietze extension theorem produces an extension of
the function to a continuous function on ℝ, and in particular on an interval containing the given
compact set. Hence the problem reduces to the basic Weierstrass theorem.
Now consider the complex setting. If the approximation is to be by holomorphic polynomials

(polynomials in z rather than polynomials in the underlying real coordinates x and y), then there
are obstructions.
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Example. The function z is continuous on { z ∈ ℂ ∶ |z| = 1 }, the one-dimensional unit circle,
and there is no sequence (pn(z)) of polynomials such that max

|z|=1
|

|

z − pn(z)|| → 0. Indeed,
uniform convergence would imply convergence of the corresponding integrals, but

∫
|z|=1

pn(z) dz = 0, whereas ∫
|z|=1

z dz = ∫
|z|=1

1
z
dz = 2�i.

Example. The function |z| is continuous on the closed unit disk, but there is no sequence (pn(z))of polynomials such that max
|z|≤1

|

|

|z| − pn(z)|| → 0. Indeed, on the open unit disk, the uniform
limit of holomorphic functions must be holomorphic (by Cauchy’s integral formula), yet |z| is
not holomorphic in the interior of the disk.
The following definition is useful for stating a positive result.

Definition. If S is a subset ofℂ, then a hole in S means a bounded component of the complement
of S.
The first big theorem on complex approximation is due to the German mathematician Carl

Runge (1856–1927), a student of Weierstrass, in a paper in Acta Mathematica in 1885 (the same
year as the Weierstrass theorem). Runge is known also for the Runge–Kutta method, a numerical
method for finding approximate solutions of ordinary differential equations. [The second half of
the method is the German mathematician Martin Wilhelm Kutta (1867–1944).]

First version of Runge’s theorem

Theorem. If K is a compact subset of ℂ (not necessarily connected) having no holes, and if f is
a holomorphic function in a neighborhood of K , then f is the uniform limit on K of a sequence
of polynomials.

This theorem has surprising consequences.
Example. There exists a sequence (pn(z)) of polynomials converging pointwise everywhere in ℂ,
the limit being identically equal to 0 in the open upper half-plane and identically equal to 1 in the
closed lower half-plane. The convergence is not uniform on compact sets!
To construct the example, apply Runge’s theorem on an increasing sequence (Kn) of compact

sets. LetKn be the union of two closed rectangles, one in the closed lower half-plane with verticesat the points −n, n, n − in, and −n − in, and the other in the open upper half-plane with vertices
at −n+ i∕n, n+ i∕n, n+ in, and −n+ in. Evidently these rectangles form an increasing sequence
whose union is the whole plane.
The piecewise-constant function that equals 0when Im z > 1∕(2n) and 1when Im z < 1∕(2n) is

holomorphic on an open set containingKn, a compact set having no holes, so by Runge’s theorem
there exists a polynomial pn that approximates this piecewise-constant function uniformly on Knwith error less than 1∕n. In other words, |pn(z)| < 1∕n when z is in the top rectangle, and
|pn(z) − 1| < 1∕n when z is in the bottom rectangle.
Consequently, pn(z)→ 0 locally uniformly in the open upper half-plane, and pn(z)→ 1 locally

uniformly in the closed lower half-plane. The convergence is not uniform in any neighborhood
of a point on the real axis.
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The following exercise was assigned in groups.
Exercise. Apply Runge’s theorem to show the existence of a so-called universalMaclaurin series.
Namely, there exists a power series ∑∞

n=0 anz
n with radius of convergence equal to 1 (that is,

lim supn→∞ |an|1∕n = 1) with the following property. For every closed disk D disjoint from the
closed unit disk, every function ℎ(z) holomorphic in a neighborhood of D, and every positive ",
there exists someN (depending on both ℎ and ") for which supz∈D||

|

ℎ(z)−
∑N

n=0 anz
n|
|

|

< ". In other
words, there are partial sums of the series that approximate an arbitrary holomorphic function on
a disk outside the disk of convergence. Such a Maclaurin series is “overconvergent” in a strong
sense.
A lemma about approximation by special polynomials is useful for solving the exercise. A

motivating observation from real analysis is the following question: Can f ∶ [0, 1] → ℝ be
approximated uniformly by polynomials having no x17 term?
The answer is yes, for the following reason. Evidently what needs to be shown is that x17

itself can be approximated by polynomials having no x17 term. Suppose a positive " has been
specified. Take a continuous function that is identically equal to zero in a neighborhood of the
origin and then rises linearly to meet the graph of x17. Such a function g can be constructed to
approximate x17 within "∕2. Next approximate g(x)∕x18 within "∕2 by a polynomial p. Then
|g(x) − x18p(x)| < x18"∕2 ≤ "∕2 when 0 ≤ x ≤ 1. Accordingly, x18p(x) approximates x17
within ", and the polynomial x18p(x) manifestly has no x17 term.
An alternative argument is to observe that the map sending x to x3 is a homeomorphism of the

unit interval. The function x17∕3 is continuous, so there is a polynomial p(x) that approximates
x17∕3 within ". Then p(x3) approximates x17 within ", and p(x3) is a polynomial that evidently
has no x17 term.
A similar argument proves the following generalization of the Weierstrass approximation the-

orem. The source is Julius Pál, Über eine Anwendung des Weierstrass-schen Satzes von der
Annäherung stetiger Funktionen durch Polynome, Tôhoku Mathematical Journal 5 (1914) 8–9.
Born in Hungary as Gyula Perl, the author later changed his name to sound more Hungarian.
Around 1919 (after service in the war), he emigrated to Denmark, after which he dropped the
accent mark.

Julius Pál, 1914

Theorem. In the Weierstrass approximation theorem, the coefficients of any fixed finite number
of monomials x, x2, . . . , xN [excluding x0] can be prescribed arbitrarily.

There is a constraint on howmanymonomials can be avoided. Here is a famous theorem proved
independently by Herman Müntz [1884–1956] and Otto Szász [1884–1952] (at about the same
time as each other).

Müntz–Szász, 1914–1916
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Theorem. A sequence of monomials 1, xn1 , xn2 , . . . is dense in the continuous functions on the
interval [0, 1] if and only if the series

∑

j 1∕nj diverges.

The unit interval is not special: any interval [0, b] will do as well. On an interval [a, b] for
which a > 0, one can even dispense with the constant function. But the theorem does not extend
to an interval like [−1, 1], for the even monomials satisfy the hypothesis but approximate only
even functions.

Runge’s theorem for general compact sets

Theorem. If K is a compact subset of ℂ, and the function f is holomorphic on a neighborhood
of K , then f is the uniform limit on K of a sequence of rational functions with poles in the holes
of K . Moreover, within each hole, the position of the pole can be prescribed arbitrarily.

(If K has no holes, then the approximation is by polynomials, as stated in the first version of
the theorem.)

Sketch of the proof of Runge’s theorem

There are two main ideas in the proof: (i) approximate Cauchy’s integral formula using Riemann
sums and (ii) push the poles to new locations. Both ideas go back to Runge.
Proof of step (i). Suppose, then, that f is holomorphic in a neighborhood of a compact set K .
The first step is to produce a cycle  that has winding number 1 around each point of K and that
has trace disjoint from K and contained in the open set where f is holomorphic. Intuitively, the
cycle  should be a union of simple closed curves, one for each connected component of K . The
precise meaning of the winding number of  around z is

1
2�i ∫

1
w − z

dw.

If the compact set K has a simple structure (a closed Jordan region, for example), then the
existence of  is evident: just draw a curve around the boundary of K . But if K is a complicated
fractal set, then some work is needed to demonstrate the existence of  convincingly.
Suppose for the moment that  has been constructed. By Cauchy’s integral formula,

f (z) = 1
2�i ∫

f (w)
w − z

dw when z ∈ K .

Since f is uniformly continuous on the trace of  , andw−z is bounded away from 0when z ∈ K
andw ∈  , the integral can be approximated uniformly for such z andw by Riemann sums. These
sums are linear combinations of rational functions of zwith first-order poles at certain points of 
(the partition points). Thus f is approximated uniformly on K by rational functions with poles
off K .
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(The error in approximation by a Riemann sum depends on the modulus of continuity of the
function. Evidently the dependence on z is uniform when z has distance from  bounded away
from zero.)
The construction of  can be carried out as follows.
Draw a grid of lines parallel to the coordinate axes with mesh size smaller than 1∕√2 times the

distance fromK to the boundary of the open set where the function f is holomorphic. Collect all
the closed squares of the grid that intersect K , and orient the boundaries counterclockwise. The
claim is that  can be taken to consist of a subset of the oriented edges of these squares: namely,
those edges that do not intersect K .
Observe that if z is a point ofK not on any of the gridlines, then the sum of the Cauchy integrals

of f over the boundaries of all the squares that intersect K equals f (z), for z is inside exactly
one of these squares. On the other hand, if an edge of a square intersects K , then there is another
square sharing that edge and intersecting K , so the integrals over edges that intersect K cancel
out. (There is a special case when the edge intersects K only at an endpoint: then there are four
squares touching at the point, and again the integrals cancel out.)
Hence the Cauchy integral over the proposed  does equal f (z)when z is not on a gridline. By

continuity, the integral still equals f (z) even when z is on a gridline. Although  will be a union
of closed curves, that information is not really needed. Viewed merely as a union of edges, the
arc  still gives an integral representing the function, and that integral can be approximated by
Riemann sums.
Proof of pole pushing. The idea behind pole pushing is shown by the following calculation, in
which z0 and z1 are two arbitrary distinct complex numbers:

1
z − z0

= 1
(z − z1) − (z0 − z1)

= 1
z − z1

⋅
1

1 −
z0 − z1
z − z1

= 1
z − z1

∞
∑

n=0

(

z0 − z1
z − z1

)n

,

with convergence when |z0 − z1| < |z − z1|. Thus the rational function 1∕(z − z0) can be
approximated by rational functions in 1∕(z − z1) when z is farther away from z1 than z0 is. Theconvergence is even uniform on sets whose distance from z1 is strictly greater than the distance
from z1 to z0.In particular, if z0 is in a hole of the compact setK , then a rational function with pole at z0 canbe approximated uniformly on K by rational functions with pole at an arbitrary point of the hole
at slightly less than half the distance of z0 toK . Iterating this observation shows that the pole can
be pushed to an arbitrary location inside the hole.
What if z0 is in the unbounded component of the complement of K? By the preceding rea-

soning, the pole can be pushed to an arbitrary location in the unbounded component. Suppose
the pole has been pushed to a point z1 outside a disk so large that the disk contains the compact
set K . Then compute as follows:

1
z − z1

= − 1
z1
⋅

1
1 − z

z1

= − 1
z1

∞
∑

n=0

(

z
z1

)n

,
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with convergence when |z| < |z1|, and in particular on K . The partial sums of this series are
polynomials. In other words, the pole in the unbounded component of the complement of K can
be pushed to infinity.

Mergelyan’s theorem

The hypothesis in Runge’s theorem is unnatural: athough the approximation takes place only on
the compact set, the function being approximated is assumed to be holomorphic in a neighborhood
of the set. The following improvement of Runge’s theorem is due to the Armenian mathematician
Sergey Nikitovich Mergelyan (1928–2008). The main idea in the proof (not presented here) is
to extend the function in a smooth way to a neighborhood of the compact set and to correct
the extended function by solving a )-problem. Then use Runge’s theorem to approximate the
extended function. The difficulty—which Mergelyan overcame—is to control the size of the
correction term.

Mergelyan’s theorems, 1951–1952

Theorem. If K is a compact set with no holes, and f is a continuous function on K that
is holomorphic on the interior of K , then there is a sequence (pn) of polynomials such that
maxz∈K |

|

f (z) − pn(z)|| → 0.

Theorem. If K is a compact set with finitely many holes, and f is a continuous function on K
that is holomorphic on the interior of K , then f is the uniform limit onK of a sequence of rational
functions with poles in the holes.
More generally, the conclusion holds in the case of infinitely many holes if the diameters of the

holes are bounded away from zero.

An example illustrating the second case is the boundary of a rectangle together with a sequence
of vertical lines condensing on one side. A Swiss cheese (the subject of a homework assignment)
is a counterexample showing that some restriction on the diameters is needed. Vitushkin found a
necessary and sufficient condition on the compact set (in terms of capacity) for the conclusion to
hold.

Mittag-Leffler’s theorem

Magnus Gustaf (Gösta) Mittag-Leffler (1846–1927), founder of Acta Mathematica (1882) and
namesake of the Mittag-Leffler Institute in the suburbs of Stockholm, was a Swedish mathemati-
cian who attended some of Weierstrass’s lectures and subsequently generalized the theorem of
Weierstrass (to be studied later on) about constructing functions with prescribed zeroes. (His
father’s name was Leffler, and his mother’s name was Mittag; he joined the names himself as an
adult, apparently because of his interest in women’s rights. His influence made it possible for
Sonya Kovalevsky [1850–1891] to be appointed professor of mathematics in Stockholm.)
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The theorem ofWeierstrass says that there exists an entire function with prescribed zeroes (sub-
ject to the zeroes not accumulating). A consequence is the existence of meromorphic functions
with prescribed poles (just take the reciprocal of a function with prescribed zeroes). Mittag-
Leffler’s main contribution was to construct functions not just with prescribed poles but with
prescribed singular parts (known as principal parts). Here is one version of the theorem.

Mittag-Leffler’s theorem, 1876–1884
Suppose G is an open subset of ℂ and E is a discrete subset of G. Suppose given, for each

point b in E, a holomorphic function pb on G ⧵ {b}. Then there exists a holomorphic function f
on G ⧵ E such that for each point b in E, the function f − pb has a removable singularity at b.
In the statement of the theorem, a discrete set means a set that has no accumulation point in G.
The typical case is that pb is a finite linear combination of powers of 1∕(z − b). The theo-

rem guarantees that there exists a function with prescribed isolated singularities and prescribed
principal parts at the singularities. A corollary of the theorem is that there exists a meromorphic
function with prescribed principal parts.
The theorem is a bit more general, allowing some essential singularities to be prescribed. For

instance, the theorem produces a meromorphic function in the plane sharing the whole singular
part of sin((z − k)−1) at each integer k. But the theorem does not allow the singular part to be
prescribed completely arbitrarily: the Laurent series on a punctured neighborhood of b needs to
converge in the whole punctured plane, or at least to admit an analytic continuation to G ⧵ {b}.
Proof. The standard modern proof uses Runge’s theorem, although Runge’s work actually was
motivated by Mittag-Leffler’s.
The first step is to exhaustG by a sequence (Kn) of compact sets such that each set is contained

in the interior of the next, and no Kn has unnecessary holes. In other words, each hole in the
compact set contains a hole inG. This construction will be needed again later in the discussion of
normal families and the proof of the Riemann mapping theorem. The construction is considered
in the textbook back in Chapter 9 (see Lemma 9.2.0) and then again in Lemma 12.5.
The first try at constructing such sets is { z ∈ G ∶ dist(z, )G) ≥ 1∕n }. The difficulty is that

this definition could produce an unbounded set ifG is unbounded. So intersect the initial set with
the closed disk of center 0 and radius n. The resulting set is compact and has no unnecessary
holes. (The set might be empty for small values of n.)
The main idea in the proof of the theorem is to build the function as an infinite series. The first

try is simply to add together all the functions pb as b runs over the countable set E. This method
certainly works when the set E is finite. In general, however, there will be an infinite series, and
the series need not converge. The idea is to add convergence factors that are holomorphic on all
of G and hence do not affect the principal parts.
There are only finitely many singular points inside the compact setK1. Add them together and

call that sum f1. In general, let fn denote the sum of the functions pb for b in the set Kn ⧵ Kn−1.Notice that when n > 1, the function fn is holomorphic on Kn−1. Use Runge’s theorem to find a
rational function gn with poles in ℂ ⧵ G such that |

|

fn(z) − gn(z)|| < 1∕2n when z ∈ Kn−1.

7



The required function is f1+∑∞
n=2(fn−gn). Indeed, if a compact setK is fixed, then the terms

in the tail of the series eventually are holomorphic on K , and the tail of the series converges
uniformly on K . Hence the series represents a holomorphic function on G ⧵ E. Moreover, at a
particular point b in E, all the terms of the sum are holomorphic in a neighborhood of b except
for one, which has the specified principal part.
The folllowing theorem is one of the results in Hadamard’s 1892 doctoral thesis, “Essai sur

l’étude des fonctions, données par leur développement de Taylor.”

Hadamard’s gap theorem
Suppose (nk) is a geometrically increasing of exponents. If the gap series

∑∞
k=1 akz

nk has radius
of convergence equal to 1, then the unit circle is a natural boundary.
The hypothesis about the exponents is that there exists a number � strictly greater than 1 such

that nk+1∕nk ≥ � for every k. The conclusion means that every boundary point is a singular point:
there is no neighborhood of a boundary point to which the function defined by the power series
extends holomorphically. Typical examples of gap sequences are (2k) and (k!).
Elementary considerations suffice to understand the series∑∞

n=1 z
n!. The radius of convergence

is equal to 1, for the series diverges when z = 1 and is a subseries of the geometric series (hence
converges absolutely when |z| < 1). Moreover, this series evidently is unbounded along the
radius from 0 to 1, where all the terms are positive. Rotating by a factor exp(2�i(p∕q)) for natural
numbers p and q shows that the series is unbounded along a dense set of radii, so the series
cannot continue to a neighborhood of any boundary point. Similar reasoning shows that the
series ∑∞

n=1 z
n!∕2n has a derivative that is everywhere noncontinuable, so ∑∞

n=1 z
n!∕2n itself is

everywhere noncontinuable, even though this series converges absolutely and uniformly on the
boundary.
A more surprising example is∑∞

n=1 z
2n∕n!. This series certainly converges when |z| ≤ 1, since

∑∞
n=1 1∕n! converges. On the other hand, the series certainly diverges when z = 1+ " and " > 0,for n! ≤ nn, so (1 + ")2n∕n! ≥ exp(2n log(1 + ") − n log n) → ∞. Therefore the series has

radius of convergence equal to 1. Evidently the series converges absolutely and uniformly on the
boundary, where |z| = 1. Moreover, the differentiated series converges absolutely and uniformly
on the boundary, since∑∞

n=1 2
n∕n! converges (by the ratio test, say). For a similar reason, the kth

derivative of the series converges on the boundary for an arbitary value of k. Accordingly, the
series represents a class C∞ function (infinitely differentiable function in the sense of real partial
derivatives) on the closed unit disk. By Hadamard’s gap theorem, however, the series cannot be
extended holomorphically to a neighborhood of any boundary point.
The question of existence of holomorphic functions infinitely differentiable on the closed disk

but having the unit circle as natural boundary was in the air at the end of the nineteenth century.
A high-level modern way to see that such functions exist is to consider the Riemann mapping
function from the unit disk onto a domain bounded by a class C∞ but nowhere real-analytic
curve. The Riemann mapping function is known to extend to be a class C∞ diffeomorphism
on the closure, and the function cannot be holomorphic across a boundary point, else the image

8



curve would be somewhere real analytic. This technique shows that there is even an injective
holomorphic function that is smooth on the closure and nowhere continuable.
Mordell’s 1927 proof of Hadamard’s gap theorem. LouisMordell (1888–1972) is best known for
his work in number theory. The so-called Mordell Conjecture was proved in 1983 by Gerd Falt-
ings, earning Faltings a Fields Medal. The reference for Mordell’s proof of Hadamard’s theorem
is L. J. Mordell, On Power Series with the Circle of Convergence as a Line of Essential Singu-
larities, Journal of the London Mathematical Society 2 (1927) 146–148; doi:10.1112/jlms/
s1-2.3.146.
It suffices to show that the point 1 is a singular point of every gap series satisfying the hypothe-

ses, for if f (z) is a gap series, then so is f (ei'z) for an arbitrary angle '. Hence if 1 is a singular
point of every gap series, then so is the point ei'.
Suppose, seeking a contradiction, that 1 is not a singular point of f . Then there is a positive

number � such that f extends to be holomorphic on D(0, 1) ∪D(1, �).
By hypothesis, the number � is greater than 1, so there is a natural number p large enough that

� > (p + 1)∕p, which implies that pnk+1 > (p + 1)nk. Let g(w) denote 1
2
(1 + w)wp. Then the

smallest power of w in the polynomial expansion of g(w)nk+1 exceeds the largest power of w in
the polynomial expansion of g(w)nk .
If∑∞

k=1 akz
nk is the series expansion of f (z), then the partial sums of the series∑∞

k=1 ak(g(w))
nk

form a subsequence of the partial sums of theMaclaurin series of (f◦g)(w). Therefore the former
series converges whenever the latter series converges. The goal is to show the existence of a
pointw such that the series for (f◦g)(w) converges, yet |g(w)| > 1. It then follows that the radius
of convergence of the original gap series defining f is larger than 1, contrary to the hypothesis.
If |w| ≤ 1 but w ≠ 1, then |g(w)| < 1. Moreover g(1) = 1. Therefore g maps D(0, 1),

the closed unit disk, onto a compact set contained in the open region where f is holomorphic.
Consequently, there is a small positive " such that gmapsD(0, 1+") into the open region where f
is holomorphic. In other words, the composite function f◦g is holomorphic on D(0, 1 + "),
and the radius of convergence of the corresponding Maclaurin series exceeds 1 + ". Therefore
∑∞

k=1 ak(g(1 + "))
nk converges. Since g(1 + ") is a real number larger than 1, the original gap

series has radius of convergence larger than 1, contrary to hypothesis.

Infinite series and products

Tools for constructing holomorphic functions are series, products, and integrals. Taylor series
and Laurent series were covered in Math 617. The next topic is the notion of an infinite product.

Infinite products

The immediate goal is to develop enough theory to make sense of formulas like the following one
proved in Chapter 6 of the textbook:
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Euler’s product formula for the sine function

sin(�z) = �z
∞
∏

n=1

(

1 − z2

n2

)

What should it mean to say that ∏∞
n=1 bn converges? Apparently, the natural definition would

be limN→∞
∏N

n=1 bn. That definition will not do, however, because if b1 = 0, then the limit of
partial products exists (and equals 0) for completely arbitrary values of the other factors. But the
existence of a limit ought not to depend on the value of the first term (or on the values of finitely
many terms).
One could insist on considering products having no factors equal to 0, but the application to

holomorphic functions needs precisely the case in which some factors are equal to 0. On the other
hand, if there were infinitely many factors equal to 0, then the limit of partial products could only
be 0, and the limit would be independent of the values of the subsequence of nonzero terms.
The standard definition of convergence of infinite products requires that there be only finitely

many factors equal to 0 and that the limit of the partial products of the nonzero factors exists and
that this limit is not equal to 0. If the limit of nonzero factors exists and equals 0, then the product
is said to diverge to 0.
One reason for excluding 0 as a limit is that one would like to pass back and forth between

infinite series and infinite products by using the exponential and logarithm functions. Another
reason is to preserve the property that a product is equal to zero if and only if some factor is equal
to zero.
Example. The infinite product ∏∞

n=1 1∕n diverges to 0. The corresponding series ∑∞
n=1 log(1∕n)(with the principal branch of the logarithm) diverges to −∞.

Example. The infinite product ∏∞
n=1

(

1 + 1
n

) diverges. Indeed, the partial product ∏k
n=1

(

1 + 1
n

)

telescopes to the value k + 1, which does not approach a finite value.
Example. The product∏∞

n=1

(

1 − 1
n2

) converges to 0 for the following reason.
Notice that 0 is an allowed value for the limit, but only if the nonzero factors converge to a

nonzero limit. In this example, the first term equals 0. Moreover,
k
∏

n=2

(

1 − 1
n2
)

=
k
∏

n=2

(n − 1)(n + 1)
n2

.

The product telescopes: each natural number appears twice in the numerator and twice in the
denominator, except for special terms at the beginning and the end. The product equals

1
2
⋅
k + 1
k

,

which has limit 1∕2 when k →∞. Therefore the original infinite product converges to 0.
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For a product of nonzero terms bn to converge to a nonzero limit L, a necessary condition is
that bn → 1. Indeed, if a positive " less than |L| is specified, then there is a natural number N
such that ||

|

L −
∏k

n=1 bn
|

|

|

< " when k ≥ N . Write pk for∏k
n=1 bn. Then

1 − bk = 1 − pk∕pk−1 =
(pk−1 − L) − (pk − L)
(pk−1 − L) + L

,

so |1 − bk| < 2"∕(|L| − ") when k > N .
Accordingly, the general term of an infinite product usually is written in the form 1 + an. Anecessary condition for convergence of an infinite product is then that an → 0. What about

sufficient conditions?
Proposition. If no term (1 + an) equals 0, then the infinite product

∏∞
n=1(1 + an) and the infinite

series
∑∞

n=1 log(1 + an) (with the principal branch of the logarithm) either both converge or both
diverge.

Example. Consider the product∏∞
n=1

(

1 − z2

n2

).
If |z| ≤ R, say, then |z2∕n2| ≤ R2∕n2, and ∑∞

n=1R
2∕n2 converges. Therefore the series

∑∞
n=1 |z

2∕n2| converges uniformly for z in a compact set by the Weierstrass M-test, so the se-
ries ∑∞

n=1 log
(

1 − z2

n2

)

converges uniformly on compact sets, and the original infinite product
converges uniformly on compact sets. (Exponentiation is a continuous operation, so if the partial
sums of the series are close to a limiting value, then the corresponding partial products obtained
by exponentiating are closed to the exponential of the limiting value.)
Notice that the discussion so far does not prove Euler’s product for the sine function. The

infinite product does converge, and multiplying by z gives an entire function having the same
zeroes as the sine function. Consequently, the two functions have a ratio that is a zero-free entire
function, hence of the form eg(z) for some entire function g. More work is needed to show that
g is the 0 function.
Proof of the Proposition. If the partial sums of the infinite series converge, then the exponentials
of the partial sums converge; hence the partial products converge (by continuity of the exponential
function). The converse argument is more delicate. If the partial products have a limit, then
so does the sequence of logarithms of partial products, but the logarithm of a product is not
necessarily equal to the sum of the logarithms for a fixed branch of the logarithm.
Suppose that the partial products do converge (to a nonzero limit). Since

log(1 + an) = log |1 + an| + i arg(1 + an),

what needs to be checked is that both ∑∞
n=1 log |1 + an| and

∑∞
n=1 arg(1 + an) converge. If the

partial products converge, then continuity of the modulus implies that the partial products of the
moduli converge, and to a positive real number. Continuity of the real logarithm function implies
that∑∞

n=1 log |1 + an| converges.

11



Nowwrite 1+an = |1+an| ei�n , where �n = arg(1+an). Since the partial products∏N
n=1(1+an)

and ∏N
n=1 |1 + an| both converge to nonzero limits, it follows that the partial products ∏N

n=1 e
i�n

converge, say to some ei'. Consequently, there is a sequence of integersmN such that'+2�mN−
∑N

n=1 �n → 0 asN → ∞. But an → 0 as n → ∞, so �n → 0, and the integer mN must eventually
stabilize at a constant value (since eventually mN and mN+1 differ by less than 1). Consequently,the series∑∞

n=1 �n converges to some value ' + 2�m.
A simple sufficient condition for convergence of an infinite product∏∞

n=1(1+an) is that
∑∞

n=1 |an|converges. The intuitive idea is that log(1 + an) ≈ an when an is close to 0, so the hypothesis im-
plies absolute convergence of the series of logarithms, hence convergence of the infinite product.
Indeed, since the condition implies that an → 0, there is no loss of generality in supposing that
|an| < 1∕2, say. Now integrating the geometric series gives a series for the logarithm:

log(1 + z) = z − 1
2
z2 + 1

3
z3 −⋯ when |z| < 1,

so | log(1 + z)| ≤ |z| + |z|2 + |z|3 +⋯ = |z|∕(1 − |z|). Hence | log(1 + an)| ≤ 2|an|.This simple sufficient condition for convergence of an infinite product is not necessary.
Example. Consider∏∞

n=1

(

1 + (−1)n

n2∕3

).
Now log(1 + an) = an − 1

2
a2n +⋯, so

log
(

1 +
(−1)n

n2∕3

)

=
(−1)n

n2∕3
− 1
2
⋅
1
n4∕3

+⋯ =
(−1)n

n2∕3
+ O(1∕n4∕3).

The alternating series∑∞
n=1(−1)

n∕n2∕3 converges, and the remainder series converges absolutely.
Hence the infinite product converges (conditionally).

The Weierstrass factorization theorem

Suppose (zn) is a discrete set of points in ℂ (no accumulation point), and (mn) is a sequence ofnatural numbers. The goal is to construct an entire function having a zero of order mn at zn forevery n.
The first try is an infinite product of the form∏∞

n=1(z − zn)
mn , but this attempt fails. Since the

factors do not tend to 1, the product diverges.
The second try is an infinite product of the form ∏∞

n=1

(

1 − z
zn

)mn . This attempt succeeds if zn
tends to infinity fast enough to make the product converge. This method handles, for instance,
the construction of a function with simple zeroes at the squares of the natural numbers, since
∑∞

n=1 z∕n
2 converges for every z (and converges uniformly on compact sets, so the limit function

is holomorphic). But the method fails to construct a function with a simple zero at each natural
number, since∑∞

n=1

(

1 − z
n

) diverges when z ≠ 0.
The third try, which succeeds, is to introduce nonvanishing convergence factors. For instance,

∞
∏

n=1

(

1 − z
n

)

exp
(z
n

)

12



does converge, uniformly on compact sets, since

log
(

1 − z
n

)

+ z
n
= −1

2
⋅
z2

n2
+⋯ = z2 ⋅ O(1∕n2).

Convergence factors were introduced by Weierstrass and caused a sensation at the time.

Existence of an entire function with prescribed zeroes

Theorem. Let (zn) be a sequence of nonzero complex numbers, possibly with repetitions, but with
no limit point. There exists an entire function with zeroes precisely at the points of the sequence,
the order of each zero being equal to the multiplicity of the point in the sequence.

The following lemma is useful in establishing the general result.
Lemma 1. If |z| ≤ 1∕2, then the principal branch of the logarithm satisfies the following esti-
mates:

|z + log(1 − z)| ≤ |z|2,
|

|

|

|

|

(

z + z2

2

)

+ log(1 − z)
|

|

|

|

|

≤ |z|3,

|

|

|

|

|

(

z + z2

2
+ z3

3

)

+ log(1 − z)
|

|

|

|

|

≤ |z|4,

and so on.

Proof. By Taylor’s theorem,

log(1 − z) = −z − z2

2
− z3

3
−⋯ when |z| < 1.

Hence
|

|

|

|

k
∑

n=1

zn

n
+ log(1 − z)

|

|

|

|

=
|

|

|

|

∞
∑

n=k+1

zn

n
|

|

|

|

≤ 1
k + 1

∞
∑

n=k+1
|z|n = 1

k + 1
⋅
|z|k+1

1 − |z|
.

Now
1

k + 1
⋅

1
1 − |z|

≤ 2
k + 1

≤ 1 when |z| ≤ 1∕2.
Consequently, the required estimate holds.
A corollary is that

|

|

|

1 − (1 − z)ez+
1
2 z
2+ 1

3 z
3+⋯+ 1

n z
n
|

|

|

≤ |z|n+1 when |z| ≤ 1 and n ≥ 1,
which is Lemma 13.0 in the textbook (page 247). Indeed, the preceding considerations show that
the entire function inside the absolute value on the left-hand side is divisible by zn+1. Moreoever,
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the derivative of that function is easily seen by explicit computation to have nonnegative coeffi-
cients. Hence the modulus of the function divided by zn+1 is maximized in the closed unit disk
when z = 1, where the value is equal to 1.
The expression

(1 − z) exp
(

z + z2

2
+ z3

3
+⋯ + zn

n

)

is known as a Weierstrass elementary factor, denoted En(z).
Construction of the convergent Weierstrass product. Behold:

∞
∏

n=1

(

1 − z
zn

)

exp

(

z
zn
+ 1
2

(

z
zn

)2

+⋯ + 1
n

(

z
zn

)n
)

.

The claim is that this product converges uniformly on compact sets, in which case the limit is an
entire function that evidently has the required zeroes.
Indeed, |zn| → ∞ by hypothesis, so if z is confined to a compact set, then |z∕zn| is boundeduniformly by 1∕2 when n is sufficiently large. The lemma then implies that the logarithm of the

general term of the product has modulus bounded by 1∕2n+1. Since these bounds are the terms
of a convergent infinite series, the infinite product converges uniformly on compact sets by the
WeierstrassM-test.
Remark. The proof reveals that the sum in the exponent could be stopped at the term with power
n − 1 or n − 17 instead of the term with power n. This refinement is not especially interesting.
The interesting question is whether the sum in the exponent can be stopped at a power that is
independent of n. That question is answered by the Hadamard factorization theorem (which we
did not have time to cover).
To construct an entire function whose zero set includes the origin, simply multiply the infinite

product by a suitable power of z.

Weierstrass factorization theorem for entire functions, 1876
Every entire function f (z) can be expressed in the following form:

zkeg(z)
∞
∏

n=1

(

1 − z
zn

)

exp

(

z
zn
+ 1
2

(

z
zn

)2

+⋯ + 1
mn

(

z
zn

)mn
)

,

where k (possibly 0) is the order of the zero of f at the origin, g is some other entire function,
the sequence (zn) is the list of nonzero zeroes of f (repeated according to multiplicity), and (mn)is a suitable sequence of natural numbers (it will do to take mn = n).

Corollary. Every function that is meromorphic in the whole plane can be written as the quotient
of two entire functions.
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The corollary appeared as problem 9 on the August 2012 qualifying exam!
Proof. Dividing f (z) by an infinite product with the same zeroes as f (of the same orders) pro-
duces a zero-free entire function. Such a function has a holomorphic logarithm, that is, can be
written in the form exp g.
Notice that the representation is not unique, for the sequence (mn) can be replaced by a larger

one. Changing this sequence of natural numbers will change the function g in the factorization.

The extension of Weierstrass’s theorem to subsets of the complex plane was done later by other
researchers (Picard and Mittag-Leffler). Here is the statement and the proof.

Weierstrass theorem for general regions

Theorem. Suppose G is an open subset of ℂ, and (zn) is a sequence of points (possibly with
repetitions) in G having no limit point inside G. Then there is a holomorphic function on G
having zeroes precisely at the points (zn) (with order corresponding to the multiplicity of the
point in the sequence).

Example. On an arbitrary open set G, there is a holomorphic function that cannot be analytically
continued across any boundary point.
Indeed, take a sequence in G that has every boundary point as an accumulation point, and use

the theorem to construct a holomorphic function with zeroes at the points of the sequence. This
function cannot extend to a neighborhood of any boundary point, for the zeroes of the function
accumulate inside that neighborhood, which would contradict the identity principle.
To build the indicated sequence, take a dense sequence (an) in the boundary of G. Create a

new sequence (bn) that contains each ak infinitely often. For instance, the sequence a1, a1, a2, a1,
a2, a3, a1, a2, a3, a4, . . . will do. Then take zn to be a point in G at distance less than 1∕n from
the point bn.
Proof of the general Weierstrass theorem. The proof in the textbook is the standardmodern proof
that throws one point to infinity. Here instead is a proof that works directly on the original open
set.
The first idea is to split the sequence of points into two parts, depending on whether the points

are close to the boundary of G or close to∞. Namely, view G as the union of the following two
disjoint sets:

S ∶= { z ∈ G ∶ |z| dist(z, )G) ≥ 1 } and T ∶= { z ∈ G ∶ |z| dist(z, )G) < 1 }.

Observe that those points of the sequence (zn) that lie in the set S must either be finitely many
or tend to∞. For in the contrary case, there would be infinitely many of these points confined to a
bounded set. The definition of S implies that these points would be bounded away from )G. The
Bolzano–Weierstrass theorem then implies that these points would have a limit point inside G,
contrary to hypothesis.
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Consequently, the first version of theWeierstrass theorem implies that there is an entire function
with zeroes precisely at the points of the sequence that lie in S. That entire function of course is
holomorphic on G.
All that remains is to construct a holomorphic function on G that has zeroes at the points of

the sequence lying in T . The product of this function with the entire function from the preceding
paragraph solves the problem.
Accordingly, let (an) denote the subsequence of points in the original sequence that happen to liein T . If there are infinitely many such terms of the sequence, then dist(an, )G)must approach 0. If

not, there would be a (further) subsequence bounded away from )G. The definition of T implies
that the subsequence would be bounded, hence would have a limit point inside G, contrary to
hypothesis.
Now let bn be a point of )G such that |an−bn| = dist(an, )G). LetEn(z) denote the Weierstrass

elementary factor:
En(z) = (1 − z) exp

(

z + 1
2
z2 +⋯ + 1

n
zn
)

.

The claim is that the following product provides the required holomorphic function:
∞
∏

n=1
En

(

an − bn
z − bn

)

.

The argument of En takes the value 1 precisely when z = an, so the nth factor in the infinite
product vanishes precisely when z = an. The singularity of the argument is on the boundary
of G, so each factor is holomorphic inside G.
What remains to show is that the infinite product converges uniformly on compact subsets

of G. When z is confined to a compact set, then z necessarily is bounded away from )G, so the
denominator z − bn is bounded away from 0. On the other hand, an − bn → 0 by construction.
Consequently, |an − bn|∕|z − bn| < 1∕2 for sufficiently large n, so the infinite product converges
uniformly on compact sets.

The metric on C(K)
Now I jump back to Chapter 9 in the textbook.
The immediate goal is to define a metric on the space of holomorphic functions on a region G,

to understand convergence in this metric, and to characterize compact sets with respect to this
metric. The first step is to define a metric on the continuous functions on a compact set.
If K is a compact subset of ℂ, then there is a standard norm on the space C(K) of continuous

functions on K: namely, the supremum norm. That is,
‖f‖K = max{ |f (z)| ∶ z ∈ K }.

The norm induces a metric (the distance between f and g is ‖f − g‖K), and convergence with
respect to this metric is uniform convergence (hence the metric is called the uniform metric): to
say that fn → f uniformly on K is precisely the statement that ‖fn − f‖K → 0.
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You know from real analysis that in the metric space ℂ (more generally in Euclidean space
of arbitrary dimension), the compact sets are precisely the sets that are simultaneously closed
and bounded (Heine–Borel theorem, named after Eduard Heine [1821–1881] and Émile Borel
[1871–1956]).1
The corresponding equivalence does not hold in the space C(K). If K is the closed unit disk,

then the sequence (zn) has no subsequence converging to an element of C(K) (hence is not com-
pact), for the sequence converges pointwise to 0 on the open unit disk and is constantly equal to 1
at the point 1; yet the sequence is bounded (being a subset of the closed unit ball of C(K)) and
closed (since the sequence has no limit point).
You may know that the generalization of the Heine–Borel theorem to general metric spaces

says that a subset of a metric space is compact if and only if the set is simultaneously complete
(Cauchy sequences converge) and totally bounded (the set can be covered by a finite number of
arbitrarily small balls).
The characterization of compact subsets of the metric space C(K) is a famous theorem from

the late nineteenth century.

Arzelà–Ascoli theorem

Theorem. A subset of C(K) is compact if and only if the set is simultaneously closed, pointwise
bounded, and equicontinuous.

More precisely, the hypotheses mean that the set S of functions has the properties that (a) for
each point z in K there exists a constantM such that |f (z)| ≤M for every function f in S (the
value ofM possibly depending on the point z but not depending on the function f ), and (b) for
every point z in K and for every positive " there is a positive � such that |f (z) − f (w)| < "
whenever f ∈ S and |z − w| < � (the value of � possibly depending on the point z but not
depending on the function f ).
Exercise. On a compact set, equicontinuity at every point is equivalent to uniform equicontinuity:
the value of � actually can be taken to be independent both of the point z and of the function f .
(The proof is analogous to the proof that a continuous function on a compact set is automatically
uniformly continuous.)
Although pointwise boundedness on a compact set is not equivalent to uniform boundedness

(think of a sequence of triangle functions with increasingly steep peaks condensing at the origin),
the proof of the theorem yields that in the presence of equicontinuity, pointwise boundedness
does imply uniform boundedness on compact sets. The theorem can be generalized to continuous
functions on a compact Hausdorff space.
The theorem is due to the Italian mathematician Giulio Ascoli (1843–1896) in a paper of 1884

in which he introduced the notion of equicontinuity. It seems that Cesare Arzelà (1847–1912)
actually published the idea of equicontinuity a year or so earlier than Ascoli did. Subsequently, in
1Apparently, this theoremwas in the air in the second half of the nineteenth century, Heine being only one of several
mathematicians who used the idea; Borel seems to have made the first explicit statement.
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1889 and in 1896, Arzelà (notice the grave accent) clarified, extended, and applied the theorem.
So technically it may be Ascoli’s theorem, but Arzelà’s work popularized the theorem, and Arzelà
even had the key concept earlier.
Proof. In a metric space, compactness is the same as sequential compactness. Accordingly, what
needs to be shown for the sufficiency of the conditions is that if (fn) is a pointwise bounded,
equicontinuous sequence in C(K), then there is a subsequence that converges uniformly on K
(necessarily to an element ofC(K), since the uniform limit of continuous functions is continuous).
An equivalent statement is that there a subsequence for which Cauchy’s criterion for convergence
holds uniformly.
Take a dense sequence (zn) in K . (If K is a finite set, then the proof is easier. To construct the

sequence for an infinite set K , cover the set with a mesh of size 1∕k, pick a point of K in each
cell that intersectsK , increase k, and iterate to produce the dense sequence. For a nice setK , say
the closure of an open set, it suffices to take the points of K having both coordinates rational.)
The sequence of complex numbers (fn(z1)) is bounded (by one of the hypotheses), so the

Bolzano–Weierstrass theorem provides an initial increasing sequence (j1(n)) of natural numbers
such that the sequence (fj1(n)(z1)) converges. There is a further subsequence (j2(n)) such that
(fj2(n)(z2)) converges (and (fj2(n)(z1)) still converges, being a subsequence of (fj1(n)(z1))). Iteratethe procedure. Then the diagonal sequence (fjn(n)) converges at the point zk for every k. Call thissequence (gn) for short.The uniform equicontinuity will force this sequence (gn) to converge everywhere (and uni-
formly). Indeed, if a positive " is specified, then there is a positive � such that if |z − w| < �,
then |f (z) − f (w)| < " for every function f in the original sequence. Now

|gn(z) − gm(z)| ≤ |gn(z) − gn(zk)| + |gn(zk) − gm(zk)| + |gm(zk) − gm(z)|.

For each fixed z, there is some point zk in the specified dense set such that |z − zk| < �. Hence
the first and third terms in the preceding inequality each can be made less than ". The middle
term will be less than " when n and m are sufficiently large, in view of the convergence of the
sequence of functions at the points of the dense set. Consequently, the diagonal sequence satisfies
Cauchy’s criterion uniformly on K .
To prove the converse direction of the theorem, first observe that a compact subset of a metric

space always is closed. If a compact set of functions fails to be uniformly bounded, then there is
a sequence (fn) of functions in the set and a sequence (zn) of points in K such that |fn(zn)| > n.There is an increasing sequence (nk) such that (znk) converges to some point z in K and (fnk)converges uniformly to some function f in C(K). Then fnk(znk)→ f (z), but also fnk(znk)→∞.
The contradiction shows that a compact set of functions is necessarily uniformly bounded.
If a compact set of functions fails to be uniformly equicontinuous, then there exists some pos-

itive " such that for every natural number n there are points zn and wn and a function fn in the
set such that |zn − wn| < 1∕n but |fn(zn) − fn(wn)| ≥ ". Compactness implies that there is an
increasing sequence (nk) such that the sequence (znk) converges to a point z in K , the sequence
(wnk) converges to a point w in K , and the sequence (fnk) converges uniformly to a continuous
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function f such that |f (z)−f (w)| ≥ ", but |z−w| ≤ 0. The contradiction shows that a compact
set must be uniformly equicontinuous after all.

The metric on C(G)
There is a standard method for bootstrapping the metric on C(K) to a metric on the space of
continuous functions on an open set G in ℂ. First notice that ‖f − g‖K∕(1+ ‖f − g‖K) defines abounded metric that determines the same topology (the same convergent sequences) on C(K) as
does ‖f −g‖K . (To verify the triangle inequality, observe that the real-valued function x∕(1+x)on the positive real numbers is both increasing and subadditive.)
A construction from earlier produces an increasing sequence (Kn) of nonempty compact sets

that exhaust G. Define d(f, g) as follows:

d(f, g) =
∞
∑

n=1

‖f − g‖Kn
1 + ‖f − g‖Kn

⋅
1
2n
.

Evidently this function d defines a metric on C(G) that is bounded by 1. The metric depends on
the choice of the exhaustion, but the topology is independent of the choice. For convenience, fix
an exhaustion once and for all.
Convergence with respect to this metric is the same as uniform convergence on every com-

pact subset of G. Indeed, convergence in this metric implies, in particular, convergence on each
individual compact set Kn and hence on an arbitrary compact set. Conversely, if convergence
happens on each compact set, and a positive " is fixed, then chopping off the tail at a point where
∑

n≥N 1∕2n < "∕2 and invoking convergence on KN shows that convergence happens in this
metric.

Arzelà–Ascoli revisited

Theorem. A subset of C(G) is relatively compact (has compact closure) if and only if this set of
functions is pointwise bounded and pointwise equicontinuous.

Proof. An equivalent statement is that every pointwise bounded, equicontinuous sequence (fn)in C(G) has a subsequence that converges uniformly on every compact subset of G. By the first
version of the theorem, there is a subsequence that converges uniformly on K1, the first set in theexhaustion of G. There is a further subsequence that converges uniformly on K2, and so on. Thediagonal subsequence converges uniformly on every compact subset of G.
For the converse, if the sequence is not bounded at some point, take a subsequence that blows

up at the point. No convergent subsequence can exist. And if the sequence fails equicontinuity
at a point, then passing to a locally uniformly convergent subsequence gives a contradiction by a
3" argument.
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Compactness in H(G)
The next goal is to characterize compactness in the spaceH(G) of holomorphic functions on the
open set G. The first observation is that H(G) is a closed subspace of C(G). In other words,
if a sequence of holomorphic functions converges uniformly on compact sets to a (necessarily)
continuous limit function, then the limit function is holomorphic. Since holomorphicity can be
tested by integration over closed curves, which are compact sets, the desired conclusion follows
immediately either from Morera’s theorem or from Cauchy’s integral formula.

Montel’s theorem (one of them)

Theorem. A set of functions in H(G) is relatively compact if and only if the set of functions is
locally bounded.

The theorem comes from Paul Montel’s 1907 thesis, written under the direction of Borel and
Lebesgue. A set of functions satisfying the condition of the theorem is called a normal family
in Montel’s terminology. Indeed, Montel published in 1927 a book titled Leçons sur les familles
normales de fonctions analytiques et leurs applications. Some authors (includingMontel himself)
allow the term normal family to admit the possibility that the limit of a subsequence is identically
equal to∞.
Proof. For the sufficiency, what needs to be shown is that a locally bounded family of holomor-
phic functions is equicontinuous at each point. By Cauchy’s estimate for the first derivative, the
family of derivatives of a locally bounded family is again a locally bounded family (one has to
shrink disks, but the property is local, so shrinking is allowable). Hence the functions in the orig-
inal family are Lipschitz with a Lipschitz constant that is locally bounded independently of the
function. Equicontinuity evidently follows.
The converse, that a normal family of holomorphic functions must be locally bounded, follows

from a previous observation that pointwise boundedness in the presence of equicontinuity implies
local boundedness.
Example. The set of holomorphic functions mapping G into the unit disk is a normal family.
Indeed, the family is not only locally bounded but even bounded. This example will be used in
the proof of the Riemann mapping theorem.

Montel’s fundamental normality criterion

Theorem. The family of holomorphic functions mapping G into ℂ ⧵ {0, 1} (the twice-punctured
plane) is a normal family in the extended sense that every sequence of such functions either admits
a subsequence that converges uniformly on compact sets to a holomorphic function or admits a
subsequence that converges uniformly to∞.
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Of course the values 0 and 1 could be replaced by two arbitrary distinct complex numbers
a and b (the same numbers for all members of the family of functions). Simply make a linear
fractional transformation that fixes∞ and moves the points a and b to 0 and 1.
The name “fundamental criterion” is due to Montel himself (critère fondamental). This the-

orem is quite deep. Indeed, an easy proof of Picard’s theorem is a consequence. The proofs of
Montel’s criterion and Picard’s theorem are deferred until later.

Applications of convergence in H(G)

Theorem. If a sequence of holomorphic functions converges normally (uniformly on compact
sets), then so does the sequence of derivatives.

Theorem (Hurwitz). If G is a connected open set, and (fn) is a sequence of zero-free holomorphic
functions converging uniformly on compact sets to a limit function f , then either f is zero-free
or f is identically equal to zero.

Corollary. If G is a connected open set, and (fn) is a sequence of injective holomorphic functions
converging uniformly on compact sets to a limit function f , then either f is injective or f is
constant.

Proof that derivatives inherit normality. The derivative of a holomorphic function is represented
by an integral, and uniform convergence of the integrands implies convergence of the integrals.

Proof of Hurwitz’s theorem. The second case can occur: consider, for example, the sequence (zn)
on the open unit disk with a puncture at the origin.
If f (z0) = 0, but f is not identically equal to 0, then f has no zeroes in some punctured

neighborhood of z0 (since the zeroes of f are isolated). Therefore ifD is a sufficiently small disk
centered at 0 whose closure is contained in G, the function f has no zero on the boundary of D.
Then

1
2�i ∫)D

f ′n(z)
fn(z)

dz→ 1
2�i ∫)D

f ′(z)
f (z)

dz.

The integral counts the number of zeroes of the function inside D. Since the approximating
integrals all are equal to 0, and the limiting integral is equal to 1, a contradiction arises.
Proof of corollary. Fix a point z0 inG. The function that sends z to fn(z)−fn(z0) is zero-free onthe regionG⧵{z0} by hypothesis. Hurwitz’s theorem implies that the limit function f (z)−f (z0)is either zero-free or constant on G ⧵ {z0}. Since z0 is arbitrary, the function f on G takes each
value in its range only once, unless the function is constant.
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Vitali’s theorem

Theorem. If (fn) is a normal family of holomorphic functions on a connected open set G, and if
the sequence converges pointwise on a subset of G that has an accumulation point in the interior
of G, then the sequence of functions converges normally on all of G.

The theorem is named for the Italian mathematician Giuseppe Vitali (1875–1932), who is
known also for an example of a nonmeasurable set of real numbers. The result is sometimes
called the Vitali–Porter theorem, since M. B. Porter discovered the theorem independently at
about the same time.
Proof. Every subsequence of (fn) has a further subsequence that converges normally to a holo-
morphic limit function. By hypothesis, all of these limit functions agree on a set that has a limit
point, so by the identity theorem, all of the limit functions agree identically onG. Call this unique
common limit g. If there were a compact set K on which the sequence (fn) fails to converge uni-formly to g, then there would be a positive " and a subsequence (fnk) such that ‖fnk − g‖K ≥ "
for every k. But the subsequence (fnk) has a further subsequence that does converge uniformly
on K to g. This contradiction completes the proof.

More on Möbius transformations

There is a Möbius transformation taking three arbitrary points to three arbitrary points. But there
is not a Möbius transformation taking four general points to four general points. Consequently,
there ought to be some invariant of four points that detects which sets of four points are equivalent
and which are not. This invariant is the cross ratio, discussed last semester. Here is a reminder.

Cross ratio The cross ratio of four (distinct) complex numbers z1, z2, z3, and z4 is the quantity
(z1 − z2)(z3 − z4)
(z1 − z4)(z3 − z2)

or z1 − z2
z1 − z4

/

z3 − z2
z3 − z4

.

Acommon shorthand notation is [z1, z2, z3, z4], not to be confusedwith homogeneous coordinates
on projective space.
The cross ratio is the image of z1 under the Möbius transformation that takes z2, z3, and z4 to

0, 1, and∞ respectively, as is evident from inspecting the formula. If one of the points is∞, then
the cross ratio is understood as a limit. For instance, if z4 = ∞, then

[z, z2, z3,∞] =
z − z2
z3 − z2

.

Here the point at infinity is fixed by the transformation.
The importance of the cross ratio is that it is invariant under Möbius transformations. In other

words, if T is an arbitrary Möbius transformation, then [z1, z2, z3, z4] = [T z1, T z2, T z3, T z4] forall choices of z1, z2, z3, and z4. The invariance is obvious for translations, since the cross ratio

22



depends only on differences of points. Similarly, the invariance is evident for dilations and for
rotations, since the cross ratio depends only on ratios. The invariance for the inversion that sends
z to 1∕z is an easy computation too, just simplifying compound fractions. Since these basic types
of transformations generate all Möbius transformations, the cross ratio is a general invariant.

Symmetry A complex number z and the complex conjugate z are symmetric with respect to
the real axis. Notice that if z2, z3, and z4 are three distinct points on the real axis, then

[z, z2, z3, z4] = [z, z2, z3, z4],

as is evident from the formula for the cross ratio. Now lines and circles are equivalent under
Möbius transformations, so a reasonable definition is that points z and z∗ are symmetric with
respect to a circle if, whenever z2, z3, and z4 are three distinct points on the circle, the followingequality holds:

[z∗, z2, z3, z4] = [z, z2, z3, z4].

The meaning is that if the circle is mapped to the real axis by a Möbius transformation, then the
points z and z∗ map to points that are complex conjugates.
This notion of symmetry is equivalent to the geometric notion: two points are symmetric with

respect to a circle if they lie on the same ray from the center, and the product of their distances
from the center equals the square of the radius. Indeed, after a translation and a dilation, the disk
can be assumed to be the standard unit disk centered at the origin. If z2, z3, and z4 are three
points on the unit circle (hence equal to the reciprocals of their conjugates), and z is any nonzero
number, then the invariance of the cross ratio implies that

[1∕z, z2, z3, z4] = [1∕z, 1∕z2, 1∕z3, 1∕z4] = [z, z2, z3, z4] = [z, z2, z3, z4].

Thus the symmetric point z∗ is equal to 1∕z, as claimed.

Automorphisms of the unit disk The knowledge that linear fractional transformations pre-
serve symmetry (in the sense just indicated) gives a way to determine a formula for the automor-
phism of the unit disk that interchanges 0 and a. Such an automorphism T must also interchange
the points∞ and 1∕ā that are symmetric to 0 and a. The invariance of cross ratio implies that

[T z, 0, a,∞] = [z, a, 0, 1∕ā],

or
T z − 0
a − 0

= z − a
z − 1∕ā

/

0 − a
0 − 1∕ā

,

whence T z = a − z
1 − āz

. A standard name for this transformation T is 'a.
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Proof of the Riemann mapping theorem

Riemann mapping theorem

Theorem. If G is a simply connected planar region, not the whole plane, then there exists a
biholomorphic mapping from G onto the unit disk.

The theorem stems from Riemann’s 1851 thesis. His proof, based on the Dirichlet principle, is
justifiable for domains with reasonable boundary, say piecewise smooth. But for nasty boundary,
a different method is needed. The modern proof is the work of many hands.
The first complete proof apparently is due to Carathéodory in 1912; he produced the map as

the limit of a sequence of maps. The modern proof via an extremal problem is due to Fejér
and Riesz, published with permission by Radó in 1922. The square-root trick to cook up an
improved mapping apparently is due to Carathéodory and Koebe. Fejér and Riesz make the
explicit computation; the method for avoiding the computation seems to be due to Ostrowski and
Carathéodory. Carathéodory’s proof (given below) avoids taking derivatives.
Remark. The map certainly is not unique, for one can post-compose with an automorphism of
the disk. The map can be made unique in various ways. For instance, if a point z0 in G is chosen
that maps to 0, and if the derivative of the mapping is specified to be a positive real number, then
the mapping is unique. Indeed, if f and g are two such maps, then f◦g−1 is an automorphism of
the unit disk fixing the origin and having positive derivative at the origin. The Schwarz lemma
implies that such a map is a rotation, and the positivity of the derivative forces this composite
map to be the identity rotation.
Another way to ensure uniqueness is to choose two distinct points z0 and z1 in G and demand

that z0 maps to 0 and z1 maps to a positive real value. Again, if f and g are two such maps,
then f◦g−1 is an automorphism of the disk that fixes 0 and maps some positive real number to a
positive real number. Hence f◦g−1 is a trivial rotation.
Proof of existence. The outline of the proof is the following. Consider the family of all injective
holomorphic functions that map the given simply connected region G into the unit disk, taking a
specified point z0 to 0. The goal is to find a mapping in this normal family that makes the image
fill out as much of the disk as possible. Namely, there is an extremal function that maximizes the
modulus of the value of the map at a second specified point z1. This extremal function must be
the required holomorphic bijection, else a new function could be constructed that increases the
value at z1.There are numerous steps to fill in.
First of all, are there any injective holomorphic functions mapping G into the unit disk? If G

were the whole plane, then there would be no nonconstant maps (by Liouville’s theorem), hence
the exclusion of the plane is necessary in the statement of the theorem.
If G is a bounded region, then there are lots of injective maps into the unit disk: translate G to

move z0 to the origin, then shrink by a suitable dilation with a factor less than 1.What if G is unbounded? Since G is not the whole plane, there is at least one point b in the
complement ofG. If b is an interior point ofℂ⧵G, then an inversion with respect to bmapsG into
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a bounded region, and the previous case can be invoked. So the hard case is that the complement
of G has empty interior: the region G could be the plane with a slit, for instance.
If b is a point in the complement of G, then z − b is a zero-free holomorphic function on G

(a simply connected region), so there is a holomorphic branch of √z − b on G. Evidently this
square root is injective (if not, the square would not be), so what needs to be shown is that the
image of G under√z − b omits some disk, thus reducing to the previous case.
Now if c is a point in the image of√z − b (and c is necessarily different from zero, since z−b is

zero-free onG), then the point−c is not in the image: for if both√z2 − b = c and
√

z3 − b = −c,
then squaring shows that z2 − b = z3 − b, a contradiction. Since

√

z − b is an open map, a whole
neighborhood of c is in the image, so a neighborhood of −c is not in the image. Thus the previous
case produces an injective map ofG into the unit disk. Composing with a suitable automorphism
of the disk will send the specified point z0 to the origin.Fix a point z1 in G different from z0. Take a sequence in the family for which the modulus
of the value of the function at z1 approaches the least upper bound of all such values. There is
a subsequence converging normally to a holomorphic limit function f . Evidently f (z0) = 0,
and |f (z1)| achieves the extreme value in the family. In particular, f (z1) is different from f (z0).Therefore the limit function is not constant, so f is injective, being the limit of injective holo-
morphic functions. The function f a priori maps into the closed unit disk, but by the maximum
principle the image lies in the open unit disk. Thus f is indeed an extremal function in the family.
What remains is to show that the extremal function is surjective. The argument is by contra-

diction. Suppose a nonzero point c in the disk is not in the image of f . The goal is to produce a
contradiction by finding a new function in the family whose value at z1 has modulus larger than
|f (z1)|.Notice that c ≠ 0, since f (z0) = 0. Under the hypothesis that c is not in the image of f , the
function 'c◦f is zero-free in G, hence has a holomorphic square root, call it g. Here 'c is thestandard self-inverse disk automorphism that swaps c and 0: namely, 'c(z) = (c − z)∕(1 − cz).This function g is injective, for otherwise the square would not be injective. Now g maps the
region G into the unit disk, but g does not belong to the specified family of functions, for g is not
normalized at z0. Indeed, 'c◦f (z0) = c, so g(z0) =

√

c for one of the two possible values of the
square root.
Set ℎ equal to '√

c ◦g. Then ℎ again maps G into the unit disk, and now ℎ(z0) = 0. What
remains to show (to reach the desired contradiction) is that |f (z1)| < |ℎ(z1)|. The plan now is to
unwind the definitions to relate f to ℎ.
On the one hand, g2 = 'c◦f , so f = 'c◦g2. On the other hand, g = '√

c ◦ℎ, so g2 =
('√

c ◦ℎ)2 = '2√c ◦ℎ. Therefore f = ('c◦'2√c )◦ℎ. Now the function 'c◦'2√c maps the unit disk
to itself, fixing the origin. By the Schwarz lemma, |'c◦'2√c (z)| ≤ |z| for every point z in the
unit disk. Moreover, if equality holds in the Schwarz lemma for even one nonzero point, then the
function has to be a rotation. But the map 'c◦'2√c evidently is not a rotation, since this map is
two-to-one (because of the square). Therefore |'c◦'2√c (z)| < |z| for every nonzero point z in
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the disk, with strict inequality.
In particular,

|f (z1)| = |'c◦'
2
√

c
(ℎ(z1))| < |ℎ(z1)|,

so the function ℎ violates the extremality of f . The contradiction shows that the map f must be
surjective after all.

Harmonic functions

The Cauchy–Riemann equations imply that the real part u of a holomorphic function f is har-
monic (satisfies Laplace’s equation). Namely, if f = u + iv, and if ux = vy and uy = −vx, then
uxx + uyy = vyx − vxy = 0. (Since the holomorphic function f has continuous derivatives of
all orders, so do the functions u and v, whence the mixed second-order partial derivatives of v
match.)
Is every real-valued harmonic function u the real part of some holomorphic function f? The

general answer is negative, for there is a topological obstruction.
Exercise. The function log |z|2 is well defined and harmonic on ℂ⧵{0}, the punctured plane, but
there is no holomorphic function f on the punctured plane such that Re f (z) equals log |z|2.
The answer is affirmative in a simply connected domain. Fix a base point (x0, y0) in the domain,

and define a harmonic conjugate function v as follows:

v(x, y) = ∫

(x,y)

(x0,y0)
u1(s, t) dt − u2(s, t) ds.

The integral is well defined—independent of the path—because the harmonicity of u implies that
the integrand is a closed differential form. (The integral over a closed loop is zero by Green’s
theorem.) The fundamental theorem of calculus implies that if v is defined by this formula, then
v1 = −u2 and v2 = u1.This formula really is the fundamental theorem of calculus. Namely, the Cauchy–Riemann
equations imply that

dv = )v
)x

dx + )v
)y
dy

= −)u
)y
dx + )u

)x
dy,

so the indicated line integral simply expresses v as the integral of the derivative.
Experience with the Cauchy integral suggests that a more powerful way to recover f from u

would be an integral over the boundary of a region. The first step is to see how to recover u itself
from a boundary integral. In the case of the unit disk, the formula is named for Siméon Denis
Poisson (1781–1840), a contemporary of Cauchy.
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Here is a magic trick for deriving the Poisson integral, an integral representation for harmonic
functions in a disk. The value of a holomorphic function at the center of a disk is the average
of the boundary values, and taking the real part shows that harmonic functions too satisfy the
mean-value property. Accordingly, if u is continuous on the closed unit disk and harmonic on the
open disk, then

u(0) = 1
2� ∫

2�

0
u(ei�) d� = 1

2�i ∫
|w|=1

u(w) dw
w
.

Compose with the disk automorphism 'a to say that

u(a) = u◦'a(0) =
1
2�i ∫

|w|=1
u('a(w))

dw
w
.

Make a change of variable, replacing w by 'a(w) and remembering that 'a is self-inverse. Lo-cally,
dw
w

= d(logw),

so using that w and w are reciprocals on the boundary shows that
d'(w)
'(w)

=
(

1
w − a

+ a
1 − aw

)

w dw
w

=
(

w
w − a

+ a
w − a

)

dw
w

when |w| = 1, and the expression in parentheses simplifies to 1 − |a|2

|w − a|2
. Thus

u(a) = 1
2� ∫

2�

0
u(ei�)

1 − |a|2

|ei� − a|2
d�, (1)

which is the Poisson integral representation for harmonic functions. Moreover,
1 − |a|2

|ei� − a|2
= Re w + a

w − a
when w = ei�,

so the real-valued harmonic function u(a) is the real part of the holomorphic function
1
2�i ∫

|w|=1
u(w)w + a

w − a
⋅
dw
w

when |a| < 1.

This formula, named for Hermann Amandus Schwarz (1843–1921), explicitly determines a holo-
morphic function (up to an additive purely imaginary constant) from the real part.
Notice that the Poisson kernel

1
2�

⋅
1 − |a|2

|ei� − a|2

is a positive function whose integral from 0 to 2� is equal to 1 (as follows from (1) when u is
identically equal to 1). Accordingly, the Poisson integral (1) exhibits the value u(a) as a weighted
average of the boundary values of u.
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This interpretation of the Poisson integral immediately yields a local maximum principle for
real-valued harmonic functions: if a harmonic function on a closed disk attains a maximum at
an interior point a, then the function reduces to a constant. Indeed, if the weighted average u(a)
is a maximum, then the values of u on the boundary must all be equal to u(a). Invoking (1)
again at a different interior point shows that u is constantly equal to u(a) everywhere in the disk.
Considering the negative of u shows that harmonic functions satisfy a minimum principle too.

The Dirichlet problem for the disk

The preceding discussion shows that the Poisson integral reproduces harmonic functions on the
unit disk. A little more work shows that the Poisson integral solves the problem of finding a
harmonic function on the disk with prescribed boundary values.
Suppose that a continuous, real-valued function u is given on the boundary circle. Define the

Poisson integral P [u] at a point a in the disk to be
1
2� ∫

2�

0
u(ei�)

1 − |a|2

|ei� − a|2
d�.

This integral defines a function of a inside the disk that is harmonic because the kernel is the real
part of a holomorphic function. Question: is the limit of this function when a tends to a boundary
point equal to the original function u at that boundary point?
The answer is affirmative when u is continuous on the boundary. Indeed, let ei be a specified

boundary point. The Poisson integral reproduces constant functions, so the difference between
the Poisson integral of u at a and the constant u(ei ) is

1
2� ∫

2�

0

1 − |a|2

|ei� − a|2
(

u(ei�) − u(ei )
)

d�.

Fix a positive ", and invoke the continuity of u to choose a positive � such that |u(ei�)−u(ei )| < "
when |� −  | < �. Split the integral into the part for which |� −  | < � and the part for which
|� −  | ≥ �. The integral over the first part is at most

"
2� ∫

|�− |<�

1 − |a|2

|ei� − a|2
d�,

which by the positivity of the Poisson kernel does not exceed
"
2� ∫

2�

0

1 − |a|2

|ei� − a|2
d�, or ",

the inequality being independent of the value of a inside the disk. The integral over the second
part tends to 0when a tends to ei since the Poisson kernel converges to 0 uniformly on that piece.
Accordingly, the limit of the value of the Poisson integral of u at a tends to u(ei ) when a tends
to ei .
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The same argument yields a more general local result. If u is merely (Lebesgue) integrable on
the boundary, then the Poisson integral of u approaches the value of u on the boundary at every
point where the boundary function is continuous.
Uniqueness of the solution of the Dirichlet problem in the disk is easy. The difference of two

solutions is a harmonic function with boundary value identically equal to zero; by the maximum
and minimum principles, such a function is identically equal to zero inside the disk.

More on the mean-value property

Morera’s theorem gives a way to characterize holomorphic functions by integration instead of by
differentiation. There is an analogous way to characterize harmonic functions via integration.
The claim is that if u is a continuous real-valued function with the property that for every point z

in a domain there is a positive radius r (depending on z) such that the average of u on every circle
centered at z of radius less than r equals u(z), then u is necessarily harmonic.
Harmonicity is a local property, so there is no loss of generality in supposing that the domain

of u is a disk and that u is continuous on the closure of the disk. Scaling and translation do not
affect the problem, so there is no loss of generality in taking the disk to be the unit disk centered
at 0.
A key observation is that the mean-value property implies a maximum principle: the function u

must attain its maximum on the boundary of the disk. Since u is continuous on a compact set,
a maximum is attained somewhere. If there is an interior maximum, then the mean value on
every small circle centered at that point equals the maximum, so umust be constantly equal to the
central value on small circles. Hence u is locally equal to the maximal value. A connectedness
argument now shows that u is constantly equal to the maximal value. So the maximum is taken
on the boundary in any case.
Let v denote the Poisson integral of the boundary value of u. (In this discussion, the symbols

u and v do not denote harmonic conjugates!) The solution of the Dirichlet problem shows that v
matches u on the boundary.
The function v, being harmonic inside the disk, satisfies both the mean-value property and the

maximum principle. The difference u−v satisfies the mean-value property since both u and v do.
Hence u − v attains its maximum on the boundary. This boundary value equals 0, so u − v ≤ 0
inside the disk. But the same argument applies to the difference v − u, so v − u ≤ 0. The two
inequalities combine to show that u − v is identically equal to 0.
Accordingly, the function u is harmonic because u matches a known harmonic function.

Variations on the maximum principle

The local maximum principle says that a nonconstant harmonic function on a connected open set
cannot have a local maximum. A corresponding minimum principle holds too (simply consider
the negative of the function). This principle follows from the mean-value property of harmonic
functions, for an average cannot equal the maximum unless the quantity being averaged is con-
stant.
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An apparent corollary would be a global maximum principle saying that the maximum of a
harmonic function must occur on the boundary, but this statement is false unless an additional
hypothesis is added. Indeed, the harmonic function Re(z) restricted to the right-hand half-plane
is equal to 0 on the boundary but is unbounded.
A correct global statement is that if G is a bounded open set, and u is a continuous function

on the closure of G that is harmonic on the interior of G, then u attains a maximum value on
the boundary of G. Indeed, the closure of G is compact, so the continuous function u attains
a maximum somewhere on the closure of G. By the local maximum principle, this maximum
must be taken on the boundary of G if u is not a constant function; and if u is constant, then the
maximum is taken on the boundary (as well as everywhere else).
An apparently more general statement is that if the domain G is bounded, the function u is

harmonic, the limit limz→b u(z) exists for every point b of the boundary of G, and this limit is
no larger than some numberM (independent of b), then u(z) ≤ M for every point z in G. This
statement actually is no more general than the previous one, for the hypotheses imply that the
function u extends to be continuous on the closure of G. Indeed, define u on the boundary to be
equal to the limit that exists by hypothesis. If b is a specified boundary point ofG, and a positive "
is prescribed, then there is a neighborhood V of b such that the values of u in V ∩ G differ from
u(b) by at most ". The existence of the limit of u at nearby boundary points then implies that u(b′)
differs from u(b) by at most " when b′ ∈ V ∩ G. Consequently, the extended u is continuous at
an arbitary boundary point b. The previous version of the maximum principle implies that the
extended u attains a maximum on the boundary, and this maximum is at mostM .
The next refinement is to relax the requirement that the limit of u exist at the boundary. Suppose

the domain G is bounded, the function u is harmonic in G, and lim supz→b u(z) ≤ M for every
point b in the boundary of G. Then u(z) ≤M for every point z in G. Indeed, the compactness of
the boundary of G implies that if a positive " is prescribed, then there exists a neighborhood V
of the boundary of G such that u(z) < M + " when z ∈ G ∩ V . Apply the previous version of
the maximum principle to the open set G ⧵ V to deduce that u(z) ≤M + " when z ∈ G. Now let
" go to 0.
The following example shows that the maximum principle can break down if there is an excep-

tional boundary point at which the lim sup is not under control. Suppose G is the unit disk, and
u(z) = Re 1+z

1−z
= 1−|z|2

|1−z|2
. The linear fractional transformation sending z to 1+z

1−z
takes the unit disk

to the right-hand half-plane and the boundary circle to the imaginary axis. Accordingly, the limit
of u(z) exists and equals 0 at every boundary point of the disk except the point where z = 1 (the
limit does not exist at this point). The function u is unbounded, so the boundary value 0 is not a
maximum!
Nonetheless, there is a maximum principle in the presence of an exceptional point if an addi-

tional hypothesis is added. Suppose that the domain G is bounded, the function u is harmonic
inG and bounded, and lim supz→b u(z) ≤M for every point b in the boundary ofG with one pos-
sible exception. Then u(z) ≤M for every point z in G. (After the fact, one can deduce that there
is no exceptional boundary point after all.) For the proof, let b0 denote the exceptional boundary
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point, let " be an arbitrary positive number, and consider the function
u(z) + " log

|

|

|

|

z − b0
diamG

|

|

|

|

,

the value of which does not exceed u(z). Since this modified harmonic function has limit −∞
at b0, the version of the maximum principle without exceptional point applies. Consequently,

u(z) + " log
|

|

|

|

z − b0
diamG

|

|

|

|

≤M when z ∈ G.
Now let " go to 0. (The same argument handles a finite number of exceptional points.)
The preceding discussion considers two-dimensional limits at boundary points. In the special

case of the unit disk, one-dimensional limits along radii are natural to consider. Suppose u is
harmonic and bounded on the open unit disk, and limr→1− u(rei�) ≤ 0 for every angle �. The
following argument shows that u(a) ≤ 0 for every point a in the open unit disk.
When a is fixed, and r is a radius strictly between |a| and 1, represent u(a) by the Poisson

integral on a disk of radius r: namely,
u(a) = 1

2� ∫

2�

0
u(rei�)

r2 − |a|2

|rei� − a|2
d�.

The hypothesis that u is bounded means that the bounded convergence theorem (or the dom-
inated convergence theorem) applies to justify taking the limit as r → 1 inside the integral.
Consequently, u(a) equals a weighted average over the unit circle of a nonpositive function, so
u(a) ≤ 0.
When u is bounded, the preceding argument works just as well in the presence of a finite number

of exceptional values of � for which the radial limit fails to exist. If you are willing to admit the
Lebesgue integral, then you can allow even a set of measure zero of exceptional values of �.
On the other hand, the hypothesis of boundedness of u cannot be relaxed. Observe that

Im
(1 + z
1 − z

)2
= Im

(1 + z − z − |z|2)2

|1 − z|4
=
4(Im z)(1 − |z|2)

|1 − z|4
.

This harmonic function on the unit disk is identically equal to 0 on the real axis, so the radial limit
exists and equals 0 at every boundary point (including the point where z = 1). Even though the
radial limit is everywhere equal to 0, the function is not bounded. Indeed, along the line where
Re z + Im z = 1, the function blows up as z approaches 1.
Another special geometry often encountered is a strip, say the vertical strip where −�∕2 <

Re(z) < �∕2. The function that takes z to sin(z) maps this strip bijectively to the plane with slits
along the real axis from 1 to +∞ and from −∞ to −1. Consequently, e−(sin z)2 is a holomorphic
function of z that is bounded on the two sides of the strip but unbounded in the strip. This
example shows again that the maximum principle breaks down on unbounded regions if there is
no control over the function at infinity. A perhaps even more dramatic example is Re cos(z), a
harmonic function that is identically equal to zero on the sides of the strip, yet is strictly positive
(and unbounded) inside the strip. The three-lines theorem, to be considered later, is a version of
the maximum principle for a strip.
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Normal families of harmonic functions

One of Montel’s theorems says that a family of holomorphic functions on a domain is normal
(relatively compact in the topology on continuous functions) if and only if the family is locally
bounded. Does the parallel statement hold for harmonic functions? That the answer is affirmative
can be seen in several ways.
A useful first observation is that normality is a local property: if a sequence of functions has the

property that every point admits a neighborhood for which there is a subsequence that converges
uniformly on compact subsets of that neighborhood, then there is a subsequence that converges
uniformly on every compact subset of the domain. Indeed, the domain can be covered by count-
ably many of the indicated neighborhoods (which can be assumed to be disks without loss of
generality). There is a subsequence converging on the first neighborhood, a subsequence of the
first subsequence converging on the second neighborhood, and so on. The diagonal subsequence
then converges uniformly on every compact set.
Since normality is a local condition, answering the original question on disks suffices. On a

disk, every harmonic function is the real part of a holomorphic function, so a natural idea is to try
to deduce the statement for harmonic functions as a corollary of the statement for holomorphic
functions. Normality implies local boundedness, so the question is whether local boundedness
implies normality.
If (uj) is a sequence of harmonic functions on a disk, then there is a sequence (fj) of holo-morphic functions such that Re fj = uj for each j. If the sequence of harmonic functions is

locally bounded, then so is the sequence (exp(fj)), since | exp(fj)| = exp(uj). A subsequence
(exp(fjk)) converges normally to a holomorphic function g. (Notice that there is no claim here
about convergence of (fjk), for the imaginary part of fj is not under control.) The local bounded-ness of the sequence of harmonic functions implies that the limiting function g is nowhere equal
to zero. Continuity of the absolute-value function implies that the sequence (exp(ujk)) convergesnormally to |g|. Continuity of the real logarithm function implies that the sequence (ujk) con-verges normally to log |g|. Accordingly, local boundedness of a family of harmonic functions
implies normality.
An alternative method is to look back at the discussion of the Poisson integral to see that there is

an explicit integral representation to produce a holomorphic function on a disk with specified real
part. The integral representation reveals that the modulus of the holomorphic function is bounded
on a slightly smaller disk by the maximum of the absolute value of the harmonic function on
the original disk. Consequently, local boundedness of a family of harmonic functions on a disk
implies local boundedness of the corresponding family of holomorphic functions. The family of
holomorphic functions is normal by Montel’s theorem, so the family of harmonic functions is
normal.
A third argument is to go back to the Arzelà–Ascoli theorem. What needs to be shown is that a

locally bounded family of harmonic functions is equicontinuous at every point. The proof in the
case of holomorphic functions uses the Cauchy integral. The same argument applies to harmonic
functions if the Cauchy integral is replaced by the Poisson integral. Namely, if u is harmonic in a
disk, and z1 and z2 are two points in the disk, then the difference u(z1) − u(z2) equals the integral
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over the boundary circle of u(w)(P (w, z1)−P (w, z2)), where P denotes the Poisson kernel. This
integral is bounded by the maximum of |u| times the maximum of |P (w, z1)−P (w, z2)| forw on
the boundary circle. The explicit formula for the Poisson kernel reveals that the latter expression is
bounded by a constant (independent of the integration variablew) times |z1−z2|. Accordingly, alocally bounded family of harmonic functions is not only equicontinuous but even equi-Lipschitz.
Remark. Problem 9 on the August 2010 qualifying examination is an analogue for harmonic
functions of Vitali’s theorem.

Harnack’s principle

Related to the preceding discussion of normal families of harmonic functions is a convergence
principle for monotonic sequences of (real-valued) harmonic functions.
Proposition. An increasing sequence of harmonic functions on a connected open set converges
uniformly on compact subsets either to +∞ or to a harmonic function.

The lemma is named for Axel Harnack (1851–1888), a Baltic German mathematician. A cor-
responding statement holds for a decreasing sequence of harmonic functions, since the negative
of a harmonic function is again a harmonic function.
The proof depends on Harnack’s inequality for positive harmonic functions. Namely, if u is

harmonic and nonnegative in the unit disk, and 0 < r < 1, then

u(0)1 − r
1 + r

≤ u(rei�) ≤ u(0)1 + r
1 − r

.

Indeed, since u is nonnegative and has the mean-value property, the Poisson integral representa-
tion shows that

u(rei�) = 1
2� ∫

2�

0
u(ei') 1 − r2

|rei� − ei'|2
d' ≤ 1

2� ∫

2�

0
u(ei') 1 − r

2

(1 − r)2
d' = u(0)1 + r

1 − r
.

The other inequality follows in the same way, using that |rei�−ei'|2 ≤ (1+r)2. (Strictly speaking,
one should integrate over a slightly smaller circle and take the limit.)
Proof of Harnack’s principle. Replacing the increasing sequence (un) by (un − u1) reduces to thecase of nonnegative functions, so Harnack’s inequality is in force. Suppose the domain contains
the unit disk. The increasing sequence (un(0)) of real numbers either tends to +∞ or is a Cauchy
sequence. In the former case, Harnack’s inequality implies that the sequence (un) converges uni-formly on compact sets to +∞. In the latter case, the same reason implies that the sequence is
uniformly Cauchy on compact subsets of the disk. The continuous limit function is represented
by the Poisson integral and so is harmonic. The generalization from convergence on disks to
convergence on general connected open sets is a routine compactness argument.
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Dirichlet problem on general domains

Dirichlet problem

The Poisson integral solves the Dirichlet problem on a disk. The corresponding problem in a
general region is not always solvable.
Example. In the punctured disk { z ∈ ℂ ∶ 0 < |z| < 1 }, there is no harmonic function u such
that u has boundary value 0 on the outer boundary and boundary value 1 on the inner boundary.
Indeed, the maximum principle implies that the harmonic function u is bounded between 0

and 1, and the version of the maximum principle with an exceptional boundary point implies that
u is bounded above by 0, hence is constantly equal to 0. Therefore the function u does not have
the required limit at the origin.
(If you forgot about the maximum principle with an exceptional point, apply the usual maxi-

mum principle to u(z) + " log |z|, where " is an arbitrary positive number. Then let " go to 0.)
This example reveals the basic obstruction to solvability of the Dirichlet problem: thinness

of the boundary. An upcoming theorem shows that the Dirichlet problem is solvable when the
boundary has no isolated points.
The method to be considered is due2 to the German mathematician Oskar Perron (1880–1975),

who is noted for beautiful expository books, especially one on continued fractions. He is remem-
bered too for the Perron integral, for a formula in analytic number theory, and for the Perron–
Frobenius theorem in linear algebra about eigenvalues of matrices with positive entries (a result
that has applications to internet search engines).

Subharmonic functions

A key tool in Perron’s method for solving the Dirichlet problem is a class of functions known as
subharmonic functions. The philosophy is that holomorphic functions and harmonic functions are
inconveniently rigid: the values of the function on an open set determine the values of the function
everywhere. Subharmonic functions are more flexible, enabling cut-and-paste operations. Yet
there is a way to get from subharmonic functions to harmonic functions through taking envelopes.
Roughly speaking, subharmonic functions sit underneath harmonic functions in the same way

that convex functions sit underneath affine linear functions. Like convex functions, subharmonic
functions need not be everywhere differentiable. In fact, subharmonic functions need not be
continuous (although continuous ones will do for a basic solution to the Dirichlet problem).
The natural context for subharmonic functions is the class of real-valued upper semicontinuous

functions. A function u (with arbitrary domain in a topological space) taking values in [−∞,∞)
is called upper semicontinuous if any of the following equivalent conditions holds:

• lim supz→z0 u(z) ≤ u(z0) for every point z0 in the domain of u.

2Oskar Perron, Eine neue Behandlung der ersten Randwertaufgabe für Δu = 0, Math. Z. 18 (1923), no. 1, 42–54.
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• Reinterpretation of the preceding statement: For every numberM larger than u(z0), thereis a neighborhood of z0 such that u(z) < M when z is in that neighborhood. (When
u(z0) ≠ −∞, the numberM can be written conveniently in the form u(z0) + ".)

• The set { z ∶ u(z) < c }, the inverse image of [−∞, c) under u, is open for every real
number c.

The word “upper” in the definition corresponds to the upper half of the inequality that charac-
terizes continuity. What the condition says about the graph of the function is that the dot at a
discontinuity fills in at (or above) the high point.
A reason for allowing the value −∞ but excluding the value +∞ is that upper semicontinuous

functions arise naturally as limits of decreasing sequences of continuous finite-valued functions.
Such limits can attain the value −∞ but not the value +∞.
Proposition. An upper semicontinuous function is bounded above on every compact set and
attains the least upper bound.

Proof. The hypothesis implies that every point z in the compact set K has a neighborhood on
which the function u is bounded above by u(z) + 1. Finitely many such neighborhoods cover K .
Hence u is bounded above on K .
If the least upper boundM is not attained, then the compact setK is covered by the sequence of

open sets of the form { z ∶ u(z) < M − 1
n
} (where n runs through the natural numbers), but there

is no finite subcover. The contradiction shows that the boundM must be attained after all.
If G is an open set in ℂ, then an upper semicontinuous function u is called subharmonic if for

every disk in G and for every harmonic function v on the disk, the difference u − v satisfies the
(local) maximum principle: namely, the function u − v cannot have a strict local maximum and
can attain a weak local maximum at a point only if u − v is constant in a neighborhood of the
point. Thus if u ≤ v on the boundary of the disk, then u ≤ v in the interior of the disk.
This property evidently is local. The property needs to hold merely on all sufficiently small

disks. In other words, for every point z0 there should be a radius r0 such that the property holds
on each disk D(z0, r) when 0 < r < r0.
Example. If f is holomorphic, then log |f | is subharmonic. (The function is defined to be equal
to −∞ at zeroes of f .)
Indeed, if v is harmonic, then log |f | − v evidently cannot attain a local maximum at a zero

of f (except in the trivial case that f is identically equal to 0). Away from the zeroes of f , there
is a locally defined branch of log f , so log |f | is harmonic, and so is the difference log |f | − v.
Hence there cannot be a local maximum unless the function is constant.
Example. If u(x, y) = min(0, x2 − y2) in ℂ, then u is not subharmonic.
Indeed, if v(x, y) is the harmonic function x2 − y2, then u(x, y) − v(x, y) is equal to 0 when

x2−y2 ≤ 0 and is equal to the negative quantity −(x2−y2)when x2−y2 > 0. Hence u−v attains
a maximal value of 0 but is not constant in a neighborhood of any point at which x = y, violating
the maximum principle.
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The initial definition of subharmonicity appears hard to verify. For functions having some
regularity, there are equivalent properties that are more easily checked.
If u is continuous, then an equivalent property is the local sub-mean-value property. In other

words, for each point z0 there is a radius r0 such that

u(z0) ≤
1
2� ∫

2�

0
u(z0 + rei�) d� when 0 < r < r0.

(This property can be used when u is merely upper semicontinuous, not necessarily continuous, if
you are willing to accept the Lebesgue integral. You need to go back to the theory of the Poisson
integral and check that the Poisson integral of a merely upper semicontinuous function produces
a harmonic function whose lim sup at the boundary sits below the boundary value.)
If u satisfies the sub-mean-value property, then so does u − v when v is harmonic. Hence

u − v satisfies the local maximum principle (if the average value at the center of some disk is
maximal, then the integrand must be constant on the disk). Conversely, if u− v satisfies the local
maximum principle for every harmonic v, then in a small disk let v be the Poisson integral of u.
The maximum principle implies that the value of u at the center is at most the value of the Poisson
integral of u at the center, which equals the average of the values of u around the boundary circle.
Hence u has the sub-mean-value property. The same argument shows that if u has the local sub-
mean-value property, then u has the global sub-mean-value property on every disk whose closure
lies inside the domain of u.
If u is twice continuously differentiable, then an equivalent condition to subharmonicity is that

Δu ≥ 0, where Δ is the Laplace operator. For the proof, suppose first that Δu > 0 with strict
inequality. If v is harmonic, then Δ(u− v) = Δu > 0. Hence u− v cannot have a local maximum,
because at a local maximum, the second derivatives )2∕)x2 and )2∕)y2 of a function must be
negative or zero. So u − v does indeed satisfy the local maximum principle.
Next suppose only that Δu ≥ 0. The goal is to show that if v is a harmonic function in a small

disk, say in D(0, r), and if u ≤ v on the boundary of the disk, then u ≤ v inside the disk. If " is
an arbitrary positive number, then u(z) + "|z|2 has strictly positive Laplacian, and u(z) + "|z|2 ≤
v(z) + "r2 on the boundary of the disk, so the previous case implies that u(z) + "|z|2 ≤ v(z) + "r2
inside the disk. Now let " go to zero.
Conversely, suppose that a twice continuously differentiable function u is subharmonic. Why is

Δu ≥ 0? In the contrary case, Δu would be negative on some open set. By what was just proved,
the function −u would be subharmonic on that set. Then both u− v and −u− (−v) would satisfy
the maximum principle for every harmonic function v. Setting v equal to the Poisson integral of u
on a small disk implies that u is equal to its local Poisson integral, that is, u is harmonic. Hence
Δu cannot be negative after all.
Example. Here are some standard ways to produce subharmonic functions.

• |f | when f is holomorphic. (The subharmonicity is easy to check from the mean-value
property.)
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• |f |p when p is a positive number and f is holomorphic. (At zeroes of f , the sub-mean-
value property is immediate. Away from zeroes of f , there is a local holomorphic branch
of f p, so the subharmonicity follows from the preceding example.)

• u◦f , where u is subharmonic and f is holomorphic. (When u is twice continuously dif-
ferentiable, compute that Δ(u◦f ) = |f ′|2(Δu)◦f . In general, approximate u by smooth
subharmonic functions, which can be done by convolving with a mollifier.)

• �u1 + �u2, where u1 and u2 are subharmonic, and � and � are nonnegative real numbers.
(This case is clear from the sub-mean-value property.)

• max(u1, u2) (pointwise maximum), where u1 and u2 are subharmonic. (This case is clear
from the sub-mean-value property.)

• More generally, suppose {ut}t is a family of subharmonic functions, and consider the point-
wise supremum supt ut(z). In general, this envelope need not be upper semicontinuous, but
if the envelope is upper semicontinuous, then the envelope is subharmonic.
[Aside: Here is an example of failure of upper semicontinuity of the envelope. The function
(1∕n) log |z| is subharmonic and negative in the unit disk for each natural number n. The
pointwise supremum of this sequence of functions equals 0 on the punctured disk but−∞ at
the center, hence is not upper semicontinuous. On the other hand, for a family that is locally
bounded above, the upper semicontinuous regularization of the envelope is subharmonic.]
To see why the envelope is subharmonic, apply the sub-mean-value property. If a positive "
is specified, and a point z0 is specified, then there is some parameter value t0 such that

sup
t
ut(z0) ≤ ut0(z0) + " ≤

1
2� ∫

2�

0
ut0(z0 + re

i�) d� + "

≤ 1
2� ∫

2�

0
sup
t
ut(z0 + rei�) d� + ".

Letting " go to 0 shows that the upper envelope has the sub-mean-value property.
• log(1+ |z|) is subharmonic. In principle, the subharmonicity can be verified by computing

second derivatives, but the calculation is nasty. Here is a trick. Observe that
log(1 + |z|) = sup

�
log |1 + ei�z|,

by the triangle inequality. For each fixed �, the function log |1+ei�z| is subharmonic, being
the logarithm of the modulus of a holomorphic function. The envelope is not only upper
semicontinuous but even continuous. Hence the preceding example shows that log(1+ |z|)
is subharmonic.
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• If u is subharmonic in a region, and D is a closed disk in the region, build a new function
by replacing u inside D by the Poisson integral of the value of u on )D. Then u satis-
fies the mean-value property at points inside D and the sub-mean-value property at points
outside D. What about points on )D? The original function satisfies the sub-mean-value
property at these points, and the Poisson integral is at least as large as u inside D, so the
average value of the new function increases. Hence the sub-mean-value property can only
improve. Thus local “Poissonization” of a subharmonic function produces a new subhar-
monic function.

Three-lines theorems

Since the modulus of a holomorphic function is a subharmonic function, many versions of the
maximum principle are most naturally stated in the context of subharmonic functions. Here is
one example that appears in applications.
Theorem. Suppose u is subharmonic in a strip { (x, y) ∈ ℝ2 ∶ a < x < b }, and u is bounded
above. Let M(x) denote sup{ u(x, y) ∶ y ∈ ℝ }. Then M(x) is a convex function of x on the
interval (a, b).

The word “convex” is understood in the usual sense of real analysis: namely, if x1 and x2 aretwo arbitrary points in the interval (a, b), and t is a real number between 0 and 1, then
M(tx1 + (1 − t)x2) ≤ tM(x1) + (1 − t)M(x2).

The geometric content of the inequality is that the graph of M lies below each chord: convex
functions are “sublinear.”
The reason for the name “three lines” is that bounds on the function on two lines control the

size of the function on any third line in between.
Proof. Since subharmonicity is a property that is preserved by translations and by dilations, there
is no loss of generality in supposing that a = −�∕2 and b = �∕2. Suppose x1 and x2 are twonumbers such that −�∕2 < x1 < x2 < �∕2. What needs to be shown is that if p is a first-
degree polynomial such that M(x1) ≤ p(x1) and M(x2) ≤ p(x2), then M(x) ≤ p(x) whenever
x1 < x < x2.View p(x) as a harmonic function that is independent of y. For an arbitrary positive ", consider
the function

u(x, y) − p(x) − "Re cos(x + iy). (2)
Since the real part of the cosine is strictly positive in the strip where |x| < �∕2, the indicated
function (2) is negative on the vertical lines where x = x1 and x = x2. Moreover, the real part
of cos(x + iy) equals cos(x) cosh(y), which tends to +∞ uniformly with respect to x between x1and x2 when |y| → ∞. Accordingly, for sufficiently large R, the function (2) is negative on the
horizontal line segments where y = ±R and x1 ≤ x ≤ x2.
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The function (2) is the difference between a subharmonic function and a harmonic function,
so the maximum principle for bounded regions implies that for every sufficiently large R, the
expression (2) is negative on the rectangular region where x1 ≤ x ≤ x2 and |y| ≤ R. Letting
R tend to infinity shows that the expression (2) is negative on the whole strip where x1 ≤ x ≤ x2.Letting " tend to zero shows that u(x, y) ≤ p(x) when x1 ≤ x ≤ x2. Taking the supremum over y
shows thatM(x) ≤ p(x) when x1 ≤ x ≤ x2, as claimed.
Remark. The proof reveals that the hypothesis of boundedness of u can be relaxed to a hypothesis
that u does not grow too fast at infinity. For instance, if there are positive constants A and B,
with B strictly less than 1, such that u(x, y) ≤ AeB|y| when −�∕2 < x < �∕2, then boundedness
of u on two lines implies boundedness on the region between the two lines. For an interval (a, b),
the requirement is that B < �∕(b − a). Generalizations along these lines are part of so-called
Phragmén–Lindelöf theory.
Corollary. Suppose f is holomorphic, not identically zero, and bounded in a vertical strip. Let
M(x) denote sup{ |f (x+ iy)| ∶ y ∈ ℝ }. Then logM(x) is a convex function; equivalently, if x1
and x2 are real numbers in the strip, and 0 < t < 1, then

M(tx1 + (1 − t)x2) ≤M(x1)tM(x2)1−t.

Proof. Apply the preceding theorem to the subharmonic function log |f | and exponentiate the
convexity inequality.

Perron’s method

Suppose ' is a given function on the boundary of a bounded region. Consider the class of all
subharmonic functions in the region whose boundary values do not exceed those of '. Take the
pointwise supremum of all such subharmonic functions. If there is a solution of the Dirichlet
problem, then this construction must yield the solution.
Indeed, the putative solution is in the class. Moreover, the putative solution is an upper bound

for all subharmonic functions with the given boundary values.
The question, then, is whether the envelope actually does solve the Dirichlet problem. The

counterexample mentioned earlier (the punctured disk) shows that some information about the
boundary has to come into play. The essential element turns out to be the existence or non-
existence of subharmonic peak functions. A peak function at a boundary point z0 of a regionG is a
negative function u onG such that limz→z0 u(z) = 0 and lim supz→w u(z) < 0whenw ∈ )G⧵{z0}.
Theorem (Solvability of the Dirichlet problem). If G is a bounded region inℂ such thatG admits
a subharmonic peak function at each boundary point, and if ' is a continuous function on the
boundary of G, then there exists a harmonic function u on G such that limz→w u(z) = '(w) for
every point w in the boundary of G.
Moreover, if  is the Perron family consisting of all subharmonic functions v on G such that

lim supz→w v(z) ≤ '(w) for every w in the boundary of G, then u(z) = supv∈ v(z) for every z
in G.
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The proof has two parts. The first part is to show that the envelope of the Perron family is
harmonic. That conclusion holds even without the hypothesis of the existence of peak functions.
The second part is to show that peak functions force the envelope of the Perron family to have the
right boundary values.
In Perron’s method, a needed fact is that if ' is the boundary value of a function u that is

subharmonic in a neighborhood of the closed disk, then the Poisson integral of ' is at least as
large as u inside the disk. Since the previous discussion about the Poisson integral used continuity
of the boundary values, some further argument is needed to handle subharmonic boundary values.
The necessary proposition is that every upper semicontinuous function on a compact set (or on

any set where the function is bounded above) is the limit of a decreasing sequence of continuous
functions. Namely, let'n(w) be supt{'(t)−n|t−w|}. (To see the point of this definition, considerthe case of a function that is constant except for a jump at one point.) When t = w, the expression
in brackets equals '(w), so 'n(w) ≥ '(w). Moreover, for each fixed t the expression in brackets
decreases as n increases, so the sequence {'n} is decreasing. IfM is an arbitrary number larger
than '(w), then by upper semicontinuity there is a neighborhood of w such that '(t) < M for
t in the neighborhood. On the other hand, the quantity |t − w| is bounded away from 0 outside
the neighborhood, and ' is bounded above, so '(t) − n|t − w| → −∞ uniformly outside the
neighborhood when n → ∞. It follows that 'n(w) < M for large n. Since M is arbitrary, the
limit to which the decreasing sequence {'n(w)} converges is '(w). What remains to see is that
'n is continuous. For arbitrary points w1 and w2, the triangle inequality implies that

'(t) − n|t −w1| ≥ '(t) − n|t −w2| − n|w1 −w2| for each t,
so 'n(w1) ≥ 'n(w2) − n|w1 − w2|. Interchanging w1 and w2 then shows that 'n is a Lipschitzfunction with Lipschitz constant equal to n. In particular, 'n is continuous.Returning to the Poisson integral, suppose that v is the Poisson integral of the boundary value
of a subharmonic function u. Approximate the boundary value by a decreasing sequence {un}of continuous functions. Let vn be the Poisson integral of un. Then vn has the boundary values
of un, so vn is a harmonic function than exceeds u on the boundary, whence vn exceeds u insidethe disk. The functions vn decrease inside the disk by the maximum principle. By the monotone
convergence theorem for integrals, the functions vn converge to v, which therefore dominates u
inside the disk.
This argument has a further implication. By Harnack’s principle, the limiting function v is

harmonic and not identically −∞ (unless u is identically −∞). Consequently, a subharmonic
function (not identically −∞) is integrable on each circle (that is, the integral is not −∞). For
similar reasons, subharmonic functions are area-integrable.

Return to the solution of the Dirichlet problem

Proof of the harmonicity of the Perron envelope. Suppose that G is a bounded domain, and ' is
a bounded function on the boundary. (For this part of the proof, the continuity of' is not needed.)
The goal is to show that the envelope u of the Perron family is harmonic.
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Recall that a function v belongs to the Perron family if and only if v is subharmonic, and
lim supz→w v(z) ≤ '(w) for every point w in the boundary of G. IfM is a constant larger than
the upper bound on ', then every function v in the Perron family has the property that v −M is
negative near the boundary of G and hence is negative everywhere inside G (by the maximum
principle; the boundedness of the domainG is used here). Therefore every function in the Perron
family is bounded above byM . Hence u, the envelope, is bounded above byM .
It suffices to verify harmonicity—a local property—on an arbitrary diskD(z0, r)whose closureis contained in G. Let {vn} be a sequence of subharmonic functions in the Perron family such

that the sequence {vn(z0)} increases up to u(z0). Replacing each vk by max{v1,… , vk} ensuresthat the sequence {vn} is increasing at each point of G.Next replace each vk with its “Poissonization” inside D(z0, r) to ensure that vk is harmonic
inside the disk. The modified sequence {vn} now is an increasing sequence in the Perron family,
and inside D(z0, r) this sequence is an increasing sequence of harmonic functions that converges
at z0 to u(z0). By Harnack’s principle, the limit of the sequence {vn} is a harmonic function v∗
inside D(z0, r).The proof is not finished, for what is known so far is that u, the Perron envelope, matches v∗, a
harmonic function, at one point. Does u match v∗ at other points of D(z0, r) besides z0?Suppose z1 is an arbitrary point of D(z0, r). Repeat the preceding construction to obtain an
increasing sequence {un} in the Perron family such that the sequence {un(z1)} converges to u(z1).Replacing each uk by max(uk, vk) gives a new increasing sequence of subharmonic functions in
the Perron family that converges to u at both points z0 and z1. Poissonizing as before produces aharmonic limit function u∗ in D(z0, r) that matches u at both z0 and z1.By construction, v∗ − u∗ ≤ 0 in D(z0, r), and v∗(z0) = u(z0) = u∗(z0). By the maximum
principle, the harmonic function v∗ − u∗ is identically equal to 0 in D(z0, r). Consequently,
v∗(z1) = u∗(z1) = u(z1). Since z1 is arbitrary, the function v∗ is a harmonic function in D(z0, r)that equals the envelope u in all of D(z0, r). Thus the envelope is harmonic (in all of G, since
z0 is arbitrary).
Proof that peak functions imply the right boundary values. Suppose now that the boundary func-
tion ' is continuous at z0 and that there is a subharmonic peak function at z0. The claim is that
the Perron envelope function u has limit '(z0) at z0. There is no loss of generality in supposing
that '(z0) = 0. (Simply subtract '(z0) from all functions.)
Fix a positive ". The goal is to find a neighborhood of z0 such that −" < u(z) < " when z is

a point of G lying in the neighborhood. Since ' is continuous at z0, there is a radius r such that
−"∕2 < '(z) < "∕2 when z is a point of )G for which |z − z0| < r.Let  be a subharmonic function peaking at z0. The intersection of the boundary ofG with the
set { z ∈ ℂ ∶ |z−z0| ≥ r } is compact, and each point z of this compact set has a neighborhoodNzsuch that the upper semicontinuous function  is negative on Nz ∩ G. Taking a finite subcover
shows that there is an open neighborhood U of the compact set { z ∈ ℂ ∶ |z − z0| ≥ r } ∩ )G
such that the function  has a negative upper bound on U ∩ G, say −�.
Let M be a large positive constant such that M� exceeds the supremum of |'| on )G. If

w is a point of )G at distance at least r from z0, then lim supz→wM (z) ≤ −M� < '(w). On
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the other hand, if w is a point of )G within distance r from z0, then lim supz→wM (z) ≤ 0 <
'(w) + "∕2. Therefore the function M − "∕2 belongs to the Perron family associated to the
boundary function '. Accordingly,M (z)−"∕2 ≤ u(z) for every point z inG. By the definition
of peak function, limz→z0M (z) = 0, so there is a neighborhood of z0 in which −"∕2 < M (z).
In this neighborhood, −" < u(z).
Similarly, lim supz→wM (z) < −'(w) when w is a point of )G at distance at least r from z0,and lim supz→wM (z) ≤ 0 < −'(w) + "∕2 when w is a point of )G within distance r from z0.Consequently, if v is an arbitrary member of the Perron family, then lim supz→w(v+M −"∕2) <

0 for every point w in )G. Since v+M − "∕2 is subharmonic, the maximum principle implies
that v +M − "∕2 is negative everywhere inside G. Thus v < −M + "∕2 inside G. Taking
the pointwise supremum over functions v in the Perron family shows that u ≤ −M + "∕2.
Since limz→z0 −M (z) = 0, there is a neighborhood of z0 in which −M (z) < "∕2. In this
neighborhood, u(z) < ".
In conclusion, there is a neighborhood of z0 such that −" < u(z) < " when z is a point of G in

the neighborhood. Since " is arbitrary, limz→z0 u(z) = 0, as claimed.

Remark on barriers

The term “barrier” was introduced by Henri Lebesgue in his note “Sur le problème de Dirichlet”
in Comptes rendus hebdomadaires des séances de l’Académie des sciences 154 (1912) 335–337.
For Lebesgue, a barrier was a harmonic peak function (more precisely, a family of functions
obtained from a harmonic peak function). He obtained a peak function at a boundary point z0,under the hypothesis of solvability of the Dirichlet problem, by finding a harmonic function with
boundary valuesmatching the distance to z0; evidently such a harmonic function is positive except
at z0, where the function takes the extreme value 0.
Lebesgue’s main point in the note was to provide an algorithm for solving the Dirichlet problem

under the assumption that there is a solution. Suppose given a continuous function on the bound-
ary of a bounded open set in the plane. Extend the function arbitrarily to a continuous function on
the closed region, say by the Tietze extension theorem. (For Lebesgue, the continuous function
was given initially on the closed region.) Execute the following algorithm.
Replace the value of the function at each point by the average value over the largest disk cen-

tered at the point and contained in the region (two-dimensional average over the disk, not one-
dimensional average over the boundary circle). Repeat the averaging process for the new function
that arises, and iterate.
The sequence of averages converges uniformly on the closed region to the solution of the

Dirichlet problem, assuming the existence of a harmonic barrier at each boundary point. (The
same argument works assuming the existence of a subharmonic peak function at each boundary
point.)
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Construction of peak functions

When do subharmonic peak functions exist? Examples in the homework assignment reveal that
there cannot be a subharmonic peak function at the center of a punctured disk.
But subharmonic peak functions do exist at reasonable boundary points. The construction is

easy at points where there is a supporting line, straightforward at points that are accessible from
the exterior by a line segment, and difficult for boundary points about which all that is known is
that the point is not a singleton boundary component.
Example. If G is a convex domain, in the sense that at each boundary point there is a supporting
line that intersects the (open) domain at no other point, then there is a harmonic peak function.
Indeed, a translation puts the boundary point at the origin, and a rotation makes the imaginary
axis the supporting line, with the domain lying in the right-hand half-plane. If the domain is
strongly convex (no boundary point besides the origin lies on the imaginary axis), then −Re z is
a peak function. If the domain is only weakly convex, then −Re√z is a peak function.
Example. Suppose z0 is a boundary point of a domainwith the property that there is a line segment
lying in the complement of the domain with one endpoint at z0. Then there is a peak function
at z0.In particular, a domain bounded by a finite number of smooth curves admits peak functions at
all boundary points. The boundary curves can even have cusps. Moreover, the region can have
some straight slits.
To construct the peak function, let z1 be a second point on the indicated line segment. Use the

linear fractional transformation (z− z0)∕(z− z1) to send z0 to 0 and z1 to∞, and make a rotation
to ensure that the line segment maps to the negative part of the real axis. If z0 is the only point
of the original line segment that lies on the boundary of the region, then use√z to map into the
right-hand half-plane, and take the negative of the real part of the image as the peak function. If
the original line segment touches the boundary of the region at more than one point, then use a
fourth root instead of a square root.
The goal now is to prove the much more general statement that if z0 is a boundary point of G,and the connected componentK of the complement ofG containing z0 contains at least one otherpoint, then there is a subharmonic peak function at z0. A linear fractional transformation makes

it possible to put the point z0 at 0 and a second point of K at∞.
The complement of K is then a simply connected region containing G, so it is possible to

define a holomorphic branch of log(z) on G. Notice that if G has a spiral structure, then the
imaginary part of log(z) could take values in an unbounded set. This phenomenon causes a
technical complication in the proof.
Fix a radius r. The immediate goal is to construct a subharmonic function ur that is boundedbetween −1 and 0, takes the value −1 on the part of G outside D(0, r), and has limit 0 at 0.

This function is not yet the required peak function, for ur might approach 0 at some points inside
D(0, r) other than the origin. But the convergent series ∑∞

n=1 2
−nu1∕n(z) will serve as the peak

function.
Having fixed r, observe that a branch of log(z∕r) onG has negative real part onG∩D(0, r) that
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tends to −∞ when z approaches the origin. Moreover, log(z∕r) maps G ∩ )D(0, r) bijectively to
an open subset of the imaginary axis, that is, to a union of disjoint open intervals in the imaginary
axis of total length at most 2�. The construction depends on those intervals.
There are (at most) countably many intervals, say Ik with center ick and length �k. The easycase occurs when all the intervals lie in a bounded subset of the imaginary axis, say between−iM

and +iM , whereM > 0. Then

(2 +M2) Re 1
z − 1

, or (2 +M2)
(x − 1)

(x − 1)2 + y2
,

is a negative harmonic function in the left-hand half-plane that tends to 0 when x → −∞. At
points of the intervals Ik on the imaginary axis, this function tends to a negative limit that is
smaller than −1 (by the choice ofM). Composing this function with log(z∕r) gives a negative
harmonic function v in G ∩ D(0, r). The function that equals −1 in G ⧵ D(0, r) and max(−1, v)
in G ∩D(0, r) is the required function ur.Now consider the general case that the intervals Ik are not contained in a bounded region. Foreach positive number c, the series

∞
∑

k=1
2�k Re

1
z − �k − ick

, or
∞
∑

k=1
2�k

x − �k
(x − �k)2 + (y − ck)2

, (3)

converges absolutely and uniformly on the half-plane where x ≤ −c. Indeed,
|

|

|

|

|

2�k
x − �k

(x − �k)2 + (y − ck)2
|

|

|

|

|

≤
2�k|x − �k|
(x − �k)2

=
2�k

|x| + �k
< 2

|x|
�k,

and the series ∑k �k converges (to a value no larger than 2�). Thus the series (3) represents a
negative harmonic function in the left-hand half-plane that tends to 0 when x → −∞. Since
each term of the series is negative, the series is smaller than any one particular term. When
x+ iy approaches a point in Ik from within the left-hand half-plane, the series approaches a value
(possibly −∞) no larger than

−2�2k
�2k + (y − ck)2

.

Since |y − ck| ≤ �k∕2 when iy ∈ Ik, the preceding fraction is at most −8∕5, hence less than −1.
As in the preceding case, composing (3) with log(z∕r) gives a harmonic function v inG∩D(z, r)
that is less than −1 nearG∩)D(0, r), so taking the maximum with the constant −1 and extending
to G ⧵D(0, r) with the constant −1 gives the required subharmonic function ur.

Analytic continuation, part I

Another application of the Poisson integral is the following useful tool for extending holomorphic
functions from a domain to a larger domain.
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Theorem (Schwarz reflection principle). Suppose G is a connected open set that is symmetric
with respect to the real axis, and f is a holomorphic function defined in the open upper half of G,
sayG+. If Im f (z) approaches 0 whenever z approaches a point of the intersection of G with the
real axis, then there exists a holomorphic function defined in all of G that agrees with f in G+.
This “analytic continuation” of f is unique: when z lies in the lower half of G, the value of the
extended function at z equals f ( z ).

The intuitive formulation of the hypothesis is that f maps a segment of the real axis into the real
axis. The theorem can be stated that way if f is known ahead of time to be continuous onto the
real axis. The more general statement above is needed in some applications. The conclusion of
the theorem shows that, somewhat surprisingly, the hypothesis about Im f forces Re f to extend
continuously to the real axis.
Notice that the function 1∕z appears to map the real axis to the real axis but fails to extend from

the upper half-plane to the whole plane. The problem is that Im(1∕z) does not have a finite limit
when z → 0. The theorem is still applicable but shows only that 1∕z extends holomorphically
from the upper half-plane to the punctured plane.
Proof of the Schwarz reflection principle. The first observation is that when z lies in the lower
half of G, the function that sends z to f ( z ) is holomorphic. The Cauchy–Riemann equations
provide one way to verify the holomorphicity. Alternatively, use that holomorphicity is a local
property, and argue as follows. If z0 is a point in G+, then f (z) admits a local power series
expansion when z is near z0 of the form ∑∞

n=0 an(z − z0)
n. Now if z is close to z0 in the lower

half of G, then the value f ( z ) is represented by the convergent series ∑∞
n=0 an(z − z0 )

n, hence
corresponds to a holomorphic function.
The proof is easy to complete under the extra hypothesis that f is continuous onto the real axis.

In this situation, f (z) = f ( z ) when z lies on the real axis, so the extended function is at least
continuous inG, holomorphic in the open upper half ofG, and holomorphic in the open lower half
ofG. Holomorphicity in a neighborhood of the real axis follows fromMorera’s theorem. Indeed,
the integral of f over a simple closed curve in G can be rewritten by adding and subtracting a
piece of contour over the real axis. This trick produces two closed contours, one in the closed
upper half-plane and one in the closed lower half-plane. Bump each contour into the appropriate
open half-plane to see that the integral equals zero.
More work is needed to finish the proof under the weaker hypothesis that Im f approaches zero

on the real axis, for this hypothesis implies continuity of Im f but does not immediately imply
continuity of Re f onto the real axis. At any rate, Im f is a continuous function in G satisfying
the mean-value property on sufficiently small disks centered at points off the real axis, and the
mean-value property holds in small disks centered at points on the real axis for the following
reason. The value of Im f equals 0 at the center of such a disk, and the values of Im f on the
top half of the disk are the negatives of the values on the bottom half, so the integral around
the boundary of the disk equals 0 by symmetric cancellation. Accordingly, the function Im f is
harmonic throughout the domain G.
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Continuing to work in a disk centered at a point on the real axis, observe that the harmonic
function Im f is the imaginary part of some holomorphic function g in the disk. In the open
upper half of the disk, the holomorphic function f − g has vanishing imaginary part and so is
equal to some real constant c. The function g + c provides a holomorphic extension of f from
the open upper half disk to the whole disk. Moreover, the holomorphic function g(z) − g( z ) is
zero on the real axis, hence identically zero by the identity principle. Thus the extension to the
lower half disk is uniquely determined by the symmetry property that f (z) = f ( z ).
Mapping by linear fractional transformations leads to generalizations of the reflection principle.

For example, if f is holomorphic in the unit disk, and |f (z)| → 1 when |z| → 1, then f extends
holomorphically to a circularly symmetric region and has the property that f (1∕z ) = 1∕f (z).

The modular group

A famous group that is important in both number theory and geometry is the so-called modular
group, which is the group of linear fractional transformations that can be represented using integer
coefficients corresponding to a matrix with determinant equal to 1. More explicitly, every such
transformation sends z to az + b

cz + d
, where ad − bc = 1. A concrete example is 3z + 2

4z + 3
. This group

is sometimes designed PSL(2,ℤ), where ℤ indicates the integers, the letter L stands for linear,
the letter S stands for special (determinant equal to 1), and the letter P stands for projective (since
the coefficients are unique only up to change of sign).
Since the coefficients are, in particular, real numbers, every such transformation maps the ex-

tended real line to the extended real line. Therefore the upper half-plane maps either to the upper
half-plane or to the lower half-plane. When the determinant is positive, the upper half-plane
actually maps to the upper half-plane. Indeed, notice that

Im az + b
cz + d

= Im
adz + bcz + ac|z|2 + bd

|cz + d|2
=
(ad − bc) Im z
|cz + d|2

.

Thus the modular group is a subgroup of the group of biholomorphisms of the upper half-plane.
The modular group has a fundamental domain, a region that contains exactly one point from

each orbit. (An orbit is the set to which the group elements move a certain point.) The funda-
mental domain is not unique. A standard choice is the set of points in the upper half-plane for
which |z| > 1 and |z + z| < 1 (the second condition says that −1∕2 < Re z < 1∕2). A part
of the boundary needs to be included in the fundamental domain (which means that the set is
actually not a “domain” in the usual sense of that word in complex analysis). A standard choice
is to include the right-hand ray where Re z = 1∕2 and Im z ≥ √

3∕2, as well as the closed arc of
the unit circle from e�i∕3 to i.
A convenient way to verify the above claims about the fundamental domain is to show that the

modular group is generated by two elements, the translation sending z to z+ 1 and the inversion
sending z to −1∕z. (Notice that the simple inversion 1∕z maps the upper half-plane to the lower
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half-plane, so the extra reflection by −1 is needed.) The corresponding matrices are
(

1 1
0 1

)

and
(

0 −1
1 0

)

.

The second transformation has square equal to the identity (since the square of the matrix is the
negative of the identity matrix, and that matrix represents the same linear fractional transforma-
tion as does the identity matrix). The first transformation followed by the second transformation
is a group element whose cube equals the identity. These two relations turn out to be the only
independent ones, so the group has the presentation { (s, t) ∶ s2 = 1, (st)3 = 1 }.
An alternative set of generators is the pair of transformations defined by the matrices

(

1 1
0 1

)

and
(

1 0
1 1

)

, perhaps a more natural choice from the point of view of symmetry. Since
(

0 −1
1 0

)(

1 −1
0 1

)(

0 1
−1 0

)

=
(

1 0
1 1

)

,

the two pairs of alleged generators do generate the same group.
Here is a strategy for proving that the fundamental domain is as claimed.
• Show that distinct group elements move the fundamental domain to sets whose interiors do

not intersect. Equivalently, show that a nontrivial group element moves the interior of the
fundamental domain to a disjoint set: no interior point of the fundamental domain canmove
to another interior point of the fundamental domain. (On the boundary, the point i is fixed
by z↦ −1∕z, and e�i∕3 is fixed by z↦ 1 − (1∕z), and e2�i∕3 is fixed by z ↦ −1 − (1∕z).)

• Show that an arbitrary point in the upper half-plane can be moved into the fundamental
domain by some composition of generators.

• Show that the alleged generators really do generate the whole group.
In class, you provided details to fill out the preceding plan, approximately as follows.
Suppose that a nontrivial group element maps some interior point z0 of the fundamental domain

to an interior point (possibly the same one). There is no loss of generality in supposing that
the second point has imaginary part at least as large as the imaginary part of the first point.
(Interchange the roles of the two points, if necessary.) The formula for the imaginary part of a
linear fractional transformation reveals that |cz0 + d|2 ≤ 1.Expanding, remembering that c and d are real, shows that

c2|z0|
2 + d2 + 2|cd|Re(z0) ≤ 1.

But |z0|2 > 1, and −1∕2 < Re(z0) < 1∕2, so as long as c ≠ 0, the following inequality is strict:
c2 + d2 − |cd| < 1, or (|c| − |d|)2 + |cd| < 1.
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Consequently, |cd| < 1; but c and d are integers, so either c = 0 or d = 0.
If c = 0, then the determinant condition implies that ad = 1, so either a = d = 1 or a = d =

−1; in either case, the linear fractional transformation is the identity, contrary to assumption. If
d = 0, then the determinant condition implies that |c| = 1, so 1 ≥ |cz0+d|2 = |z0|2, contradictingthat z0 lies in the interior of the fundamental domain (which requires that |z0|2 > 1). In summary,
the supposition that an interior point of the fundamental domain moves to another interior point
via some nonidentity group element leads to a contradiction.
Next consider how to move an arbitrary point z into the fundamental domain by some com-

position of alleged generators. The first observation is that under all possible motions, there is
one that achieves the maximum value of the imaginary part. To see why, observe again that the
imaginary part of az + b

cz + d
equals (Im z)∕|cz + d|2. Now |cz + d| ≥ |Im (cz + d)| = |c| Im (z).

Accordingly, if |c| Im(z) > 1, then the imaginary part of the image of z is less than Im(z). There-
fore only the finitely many values of the integer c for which |c| ≤ 1∕ Im(z) are candidates when
seeking to maximize the imaginary part of the image of z. For any particular value of c, the
quantity (Im z)∕|cz+d|2 tends to zero when |d| →∞, so only finitely many values of d are can-
didates when seeking to maximize the imaginary part of the image of z. From the finite number
of choices for c and d, evidently some choice achieves the maximum value for the imaginary part
of the image. Composing with a translation puts the image point within the strip where the real
part has absolute value not exceeding 1∕2.
Now the only issue is whether this image point could be inside the unit circle. But Im(−1∕z) =

(Im z) ∕|z|2, so if |z| < 1, then the imaginary part can be increased by applying another trans-
formation, contradicting the maximality. Therefore the image point is either in the interior of
the fundamental domain or on the boundary. The two vertical boundaries are equivalent under
translation, and the two circular arcs are equivalent under z↦ −1∕z. Therefore an arbitrary point
of the upper half-plane can be moved into the fundamental domain by a composition of alleged
generators.
Finally, why do the alleged generators actually generate the modular group? Pick an arbitrary

group element and a point z0 in the interior of the fundamental domain. The specified group
element moves that point somewhere. Compose with a suitable product of generators to move
the image back into the fundamental domain. The composition is a group element that moves a
point of the fundamental domain to another point of the fundamental domain. If the new image
point is in the interior of the fundamental domain, then the first part of the argument shows that the
composite function is the identity; that is, the specified group element is a product of generators.
If the new image point is on the boundary of the fundamental domain, then the open mapping
principle implies that an interior point close to z0 maps to an interior point of the fundamental
domain, reducing to the preceding case. Thus every group element is a composition of the alleged
generators.
The third step can alternatively be handled directly, without using the other two steps. Namely,

if translation and inversion generate a proper subgroup, then consider among the group elements
outside the subgroup one that minimizes the value of |c|. That minimal value cannot be 0, for the
determinant condition implies that if c = 0, then a = d = 1 or a = d = −1, so the transformation
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reduces to the form z±b, which is a translation (thus in the subgroup). When c ≠ 0, the Euclidean
algorithm provides integers k and r, where |r| < |c|, such that a = kc + r. Then
(

1 −k
0 1

)(

a b
c d

)

=
(

r b − kd
c d

)

, so
(

0 1
−1 0

)(

1 −k
0 1

)(

a b
c d

)

=
(

c d
−r −b + kd

)

,

contradicting the miminality of c.

The congruence subgroup

Consider the subgroup of the modular group consisting of elements whose matrices are congruent
modulo 2 to the identity matrix. Examples are

(

1 2
0 1

)

and
(

1 0
2 1

)

.

In general, the matrices in question have the form
(

a b
c d

)

with a and d odd but b and c even.
The claim is that a scheme similar to the preceding one shows that these two matrices generate
the congruence subgroup, and a fundamental domain is the set of points in the strip in the upper
half-plane where Re (z) has absolute value less than 1 and z lies outside the circles of radius 1∕2
with centers at ±1∕2. The fundamental domain for the whole modular group has three boundary
curves, but the fundamental domain for the congruence subgroup has four boundary curves (two
of which should be included as part of the fundamental domain). Details are available in the
textbook.

The modular function

By the Riemann mapping theorem, the right-hand half of the fundamental domain of the congru-
ence subgroup can be mapped to the upper half-plane, with the boundary mapping to the real axis,
and the points 0 and 1 fixed. Schwarz reflection across the imaginary axis extends the function to
be holomorphic on the whole fundamental domain. Now the function extends to be holomorphic
on the whole upper half-plane either by iterated Schwarz reflection or by defining the function
to be invariant under the action of the congruence subgroup. In other words, the modular func-
tion � has the property that �(g(z)) = �(z) for every element g of the congruence subgroup. The
modular function is locally injective on the open upper half-plane and defines an infinite-sheeted
covering of ℂ ⧵ {0, 1}, the twice-punctured plane.

Analytic continuation along curves

A standard, general method for extending the domain of a holomorphic function (a process tra-
ditionally called “analytic” continuation rather than “holomorphic” continuation) is continuation
along a curve. Suppose  ∶ [0, 1]→ ℂ is a continuous function (an arc, possibly self-intersecting),
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and f0 is a convergent power series centered at (0). An alternative terminology is that f0 is a
germ of a holomorphic function at (0). A germ at a point is an equivalence class of holomorphic
functions, two functions being equivalent if they agree in some neighborhood of the point.
An analytic continuation along  is a family (ft), each ft being a germ of a holomorphic

function at (t), or equivalently a convergent power series in powers of z − (t), satisfying the
following local compatibility condition. For every t there exists a positive � such that if |s−t| < �,
then

1. |(s) − (t)| is less than the radius of convergence of ft, and
2. the power series defined by ft, which according to the preceding condition converges in a

neighborhood of (s), determines a germ at (s) that equals fs.
The intuition is that there is a chain of overlapping disks covering the curve such that on each

disk there is an analytic continuation of the function from the preceding disk.
Remark. 1. The radius of convergence of ft is a continuous function of t. Indeed, if s is

close to t, then (s) is close to (t), say |(t) − (s)| < ". Accordingly, the radius of
convergence of fs is at least the radius of convergence of ft minus ". By symmetry, the
radius of convergence of ft is at least the radius of convergence of fs minus ". Put the two
inequalities together.

2. Consequently, there is a positive lower bound for the radius of convergence of ft as t runsover the interval [0, 1].
3. Analytic continuation of f0 along a specified curve  is unique. For suppose (ft) and (gt)are two continuations. Then ft = gt for t close to 0 (within the radius of convergence of f0).Suppose T is the supremum of values of t for which ft = gt. If s is so close to T (from

below) that (s) and (T ) differ by less than the minimal radius of convergence, then the
equality of fs and gs implies the equality of ft and gt for some values of t larger than T .
Hence equality holds for all t.

Example. If 1 and 2 are two curves with the same endpoints, that is, 1(0) = 2(0) and 1(1) =
2(1), then the analytic continuation of f0 along 1 is not necessarily equal to the analytic contin-uation of f0 along 2.
Suppose, for instance, that 1(t) = exp(�it) and 2(t) = exp(−�it). Let f0 be

√

z, defined in
polar coordinates near 1 as r1∕2ei�∕2, with � close to 0. Analytic continuation of f0 along 1 hasto have the angle changing continuously through positive values, which means that the continued
value of√z near−1 is exp(i�∕2), or i. On the other hand, the analytic continuation of f0 along 2
has the angle changing continuously through negative values, giving a value of√z near −1 equal
to exp(−i�∕2), or −i.
The question arises of when analytic continuation along two different curves does lead to a

unique value. The following theorem gives an answer.
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Theorem (Monodromy theorem). Suppose 1 and 2 are two curves with the same endpoints in
a region G. Suppose f0 is a convergent power series at 1(0) (which equals 2(0)). Suppose
f0 admits analytic continuation along every curve in G. If 1 and 2 are homotopic in G, then
analytic continuation of f0 along 1 matches the analytic continuation of f0 along 2.

What “homotopic” (strictly speaking, “fixed endpoint homotopic”) means is that 1 can be
continuously deformed into 2 within G. More formally, there exists a continuous function
F ∶ [0, 1] × [0, 1] → G such that F (0, t) = 1(t), F (1, t) = 2(t), F (s, 0) = 1(0), and F (s, 1) =
1(1).Notice that in the preceding example with the square-root function, the two curves are not
homotopic in ℂ ⧵ {0}, which is the region in which f0 admits unrestricted analytic continuation.
Example. You know fromMath 617 that a zero-free holomorphic function in a simply connected
domain admits a holomorphic logarithm. A new way to deduce this property is to apply the
monodromy theorem. Locally (in a small disk), a nonzero quantity has a logarithm, since the only
ambiguity in determining a logarithm is the choice of the argument (angle). Analytic continuation
to an overlapping disk is possible by matching the choice of angle at one point in the intersection
of the two disks. Accordingly, unrestricted analytic continuation is possible. If the region is
simply connected, then continuation along two different paths joining the same points leads to
the same value, so a globally defined function appears.
Example. A problem on the January 2011 qualifying examination asks for a proof that the power
series∑∞

n=1 z
n∕n2 can be analytically continued to ℂ ⧵ [1,∞).

The idea is that f ′(z) = ∑∞
n=1 z

n−1∕n, so zf ′(z) = ∑∞
n=1 z

n∕n = log 1
1−z

. Thus f ′(z) extends to
be holomorphic on ℂ ⧵ [1,∞) (notice that there is a removable singularity at 0).
Consequently, f admits unrestricted analytic continuation along curves in ℂ ⧵ [1,∞): simply

integrate the globally defined derivative to continue f along a curve. Since the region is simply
connected, all curves are homotopic to each other. Hence f can be analytically continued to the
whole region.
Proof of the monodromy theorem. If two parametrized curves are close to each other (so close
that the separation |1(t) − 2(t)| is always less than the minimum of the radius of convergence of
the function along 1), then the analytic continuation is the same along both curves. (The argu-
ment is the same as before: look at the supremum of values of t for which the analytic continuation
at t matches on both curves.) Now look at the supremum of values of s for which analytic con-
tinuations along F (0, t) and F (s, t) match at the endpoint where t = 1. By the argument just
indicated, the value of s can be bumped slightly. Hence analytic continuations along F (0, t) and
F (1, t) match at the terminal point.
Remark. The hypothesis that the two curves are homotopic is automatic if the region is simply
connected. The hypothesis that the germ admits analytic continuation along every curve in the
region is a hypothesis that is not obvious how to check in general.
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Proof of Montel’s fundamental normality criterion using the
modular function

Since normality is a local property, there is no loss of generality in supposing that the common
domain of the functions in the family is the unit disk. Each function f in the family has range
contained in ℂ ⧵ {0, 1}, the twice-punctured plane. The modular function � is locally injective,
so there is a local inverse of � defined in a neighborhood of f (0). The local inverse is highly
nonunique, but there is a canonical way to single out a choice of local inverse: the one that maps
f (0) into the standard fundamental domain. The composition of f with this local inverse admits
unrestricted analytic continuation within the unit disk: if the function has been continued to a
neighborhood of a point z0, andD is a disk overlapping the neighborhood, define �−1◦f inD by
choosing a branch of �−1 compatible with the existing choice in a neighborhood of f (z0). By the
monodromy theorem, a global function f̃ appears that maps the unit disk into the upper half-plane
and has the property that �◦f̃ = f .
This construction with the modular function can be carried out for each function in the given

family, producing a new family that of functions mapping the disk into the upper half-plane. A
further composition with the Cayley transform (the function sending z to (z − i)∕(z + i), which
maps the upper half-plane bijectively to the unit disk) produces a family of functions mapping
the disk into the disk. This new family is bounded, hence normal by a simpler theorem of Montel
(the one about local boundedness characterizing normality). Consequently, corresponding to a
sequence (fn) in the original family is a subsequence (nk) such that the composition of the Cayley
transform with f̃nk is a sequence converging normally on the unit disk to a holomorphic function
(possibly a finite constant).
If the limit function is a nonconstant holomorphic function, then the range is contained in

the open unit disk (by the maximum principle). Composing with the inverse Cayley transform
and then with the modular function � shows that the sequence (fnk) converges normally to a
holomorphic function. The same argument applies when the initial limiting function is a constant
that lies in the interior of the unit disk.
The difficult case occurs when the first limiting function is a constant of modulus 1. Undoing

the Cayley transform shows that the sequence (f̃nk) converges normally either to a boundary point
of the upper half-plane or to∞. In particular, the sequence (f̃nk(0)) of complex numbers converges
to a point of the extended boundary of the upper half-plane. Therefore the sequence (fnk(0)) ofcomplex numbers cannot remain in a compact subset of ℂ ⧵ {0, 1}.
Passing to a further subsequence shows that there is no loss of generality in supposing that the

sequence (fnk(0)) converges either to 0 or to 1 or to∞. The three cases are essentially equivalent,
for the three points can be permuted by linear fractional transformations that map the twice-
punctured plane to itself.
Suppose first that 1 is the accumulation point. Since the unit disk is simply connected, and the

functions in the family omit the value 0, there is a holomorphic function gnk such that g2nk = fnkand gnk(0) → −1. Since gnk evidently omits the values 0 and 1, the previous analysis applies
to the sequence (gnk) and shows that this sequence admits a subsequence converging normally
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to a holomorphic function. Accordingly, the sequence (fnk) admits a subsequence converging
normally to a holomorphic function.
If instead the point 0 is the accumulation point, apply the same argument to 1 − fn. And if

∞ is the accumulation point, apply the same argument to 1∕fn (which moves the accumulation
point to 0). This final case is the one in which the extended sense of normality arises (allowing
the point at∞ as a limit).

Proof of Picard’s great theorem

The theorem says that if f is holomorphic in a punctured disk, and there is an essential singularity
at the puncture (that is, the Laurent series has infinitelymany termswith negative exponents), then
every complex number—with one possible exception—is in the range of the function. The same
conclusion holds when the disk is shrunk, so an immediate consequence is that every value—with
one possible exception—is taken infinitely often.
An exceptional value can occur: the function e1∕z has an essential singularity at the origin and

takes every nonzero value infinitely often in every punctured neighborhood of the origin. On
the other hand, the function sin(1∕z) has an essential singularity at the origin and takes every
complex value infinitely often.
Picard’s “little theorem” says that a transcendental (nonpolynomial) entire function takes every

complex value—with one possible exception—infinitely often. Since an entire function that is
not a polynomial can be viewed as having an essential singularity at infinity, the little theorem is
a corollary of the great theorem.
The function ez has 0 as an exceptional value. The function zez also has 0 as an exceptional

value, since the value 0 is taken once but not infinitely often.
To prove the great theorem, suppose without loss of generality that the essential singularity

is at 0. Seeking a contradiction, suppose there are two distinct complex numbers a and b that
f takes only finitely many times. Shrinking the neighborhood reduces to the case that these two
values are not taken at all. And considering the function (f − a)∕(b − a) reduces to the case
that the omitted values are 0 and 1. Dilating the independent variable shows that the punctured
neighborhood can be taken to be the punctured unit disk.
Define fn via fn(z) = f (z∕n), and consider the family (fn) in the punctured disk. By Montel’s

fundamental normality criterion, this family is normal in the extended sense. There are two cases.
First suppose there is a subsequence (fnk) converging normally to a holomorphic function. The

circle of radius 1∕2 is a compact set on which the subsequence is bounded, say byM . Accord-
ingly, there is a sequence of annuli with outer radius 1∕2 and inner radius approaching 0 such that
f is bounded byM on the boundary, hence on the whole annulus (by the maximum principle).
Therefore f is bounded byM on the union of the annuli, which is the whole punctured disk of
radius 1∕2. Then the singularity is removable, contrary to the hypothesis.
Second, suppose there is a subsequence converging normally to∞. Considering the sequence

of reciprocals gives a sequence converging normally to 0. By the preceding argument, the re-
ciprocal of the original function has a removable singularity, and the singularity is removed by
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setting the value at the origin to be 0. Hence the original function has a pole, again contrary to
the hypothesis.
Thus the assumption that f omits two values contradicts the hypothesis that the singularity is

essential. The proof of Picard’s theorem is complete.
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