Exercise on three-circles theorems

In this assignment, you will apply subharmonic functions to prove Hadamard's three-circles theorem (which is one of the topics on the official syllabus for the qualifying examination in complex analysis).

1. Suppose u is a subharmonic function in an annulus with inner radius a and outer radius b : namely, $\{z \in \mathbb{C}: a<|z|<b\}$. Let $m(r)$ denote the maximum of $u(z)$ when $|z|=r$. Prove that if $a<r_{1}<r<r_{2}<b$, then

$$
m(r) \leq \frac{\log r_{2}-\log r}{\log r_{2}-\log r_{1}} m\left(r_{1}\right)+\frac{\log r-\log r_{1}}{\log r_{2}-\log r_{1}} m\left(r_{2}\right)
$$

Sometimes this inequality is described by saying that $m(r)$ is "a convex function of $\log r$." An equivalent formulation of the inequality is that

$$
m(r) \leq \frac{\log \frac{r_{2}}{r}}{\log \frac{r_{2}}{r_{1}}} m\left(r_{1}\right)+\frac{\log \frac{r}{r_{1}}}{\log \frac{r_{2}}{r_{1}}} m\left(r_{2}\right) .
$$

Suggestion: Use a harmonic comparison function of the form $A+B \log |z|$.
2. Deduce that if f is a holomorphic function in the annulus, and $M(r)$ denotes the maximum of $|f(z)|$ when $|z|=r$, then

$$
M(r) \leq M\left(r_{1}\right)^{\lambda} M\left(r_{2}\right)^{1-\lambda}, \quad \text { where } a<r_{1}<r<r_{2}<b, \text { and } \lambda=\frac{\log \frac{r_{2}}{r}}{\log \frac{r_{2}}{r_{1}}}
$$

This statement is Hadamard's three-circles theorem (Theorem 23.0.3 on page 387 of the textbook).
3. Suppose in Part 1 that u is bounded above, and $a=0$. Let r_{1} approach 0 to deduce that $m(r)$ is an increasing function of r. Extend u to the whole disk $\{z \in \mathbb{C}:|z|<b\}$ by declaring $u(0)$ to be $\lim _{r \rightarrow 0^{+}} m(r)$. Prove that the extended function u is subharmonic on the whole disk.
This statement is a removable singularity theorem for subharmonic functions that are bounded above on a punctured disk.

