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Exercise on combining the Weierstrass and
Mittag-Leffler theorems

Introduction

Although the proof of theWeierstrass theorem (about prescribed zeroes) is multiplicative, and the
proof of theMittag-Leffler theorem (about prescribed singular parts) is additive, the two theorems
can be combined into a unified statement, as Mittag-Leffler himself showed.1

The Weierstrass theorem prescribes the orders of zeroes of a holomorphic function but not
the coefficients of the Taylor series. On the other hand, Mittag-Leffler’s theorem produces a
meromorphic function with poles not only of prescribed orders but also with prescribed principal
parts. A natural question is whether a holomorphic function can be constructed with finitely many
coefficients of the Taylor series prescribed at given points.

The goal of this exercise is to provide an affirmative answer both to this question and to a more
general question for meromorphic functions. You will show how to prescribe at given points
finitely many terms of the Laurent series, including some terms involving positive powers of the
variable. In particular, you will generalize Exercises 1 and 5 in §3 of Chapter VIII of the textbook.

Throughout, suppose that G is an open subset of ℂ (and G may be assumed connected without
loss of generality). Let E be a specified discrete subset of G (a subset having no accumulation
point inside G). The set E is necessarily countable, so you can view E as a sequence if you like.
(Possibly E is a finite set, but the case of E being infinite is the situation of most interest.)

Interpolation

Your first task is to solve an interpolation problem. Suppose given a complex number cb for
each point b in E. Prove the existence of a holomorphic function f on G with the property that
f (b) = cb for each b in E. In other words, there exists a holomorphic function with prescribed
values at the points of a discrete set.

Suggestion The Weierstrass theorem provides a holomorphic function g with a simple zero
at b for each b in E. The basic version of Mittag-Leffler’s theorem provides a meromorphic
function ℎwith principal part ab∕(z−b) at b for each b, the value of the complex number ab being
at your disposal. Adjust ab to guarantee that the product gℎ solves the interpolation problem.

Prescribing finitely many coefficients

An initial chunk of the Laurent series at b of a meromorphic function can be viewed as the sum of
a polynomial in 1∕(z−b) and a polynomial in (z−b). Suppose given two families of polynomials,

1G. Mittag-Leffler, “Sur la représentation analytique des fonctions monogènes uniformes d’une variable indépen-
dante,” Acta Mathematica 4 (1884) 1–79.
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{ pb ∶ b ∈ E } and { qb ∶ b ∈ E }. Your next task is prove the existence on G of a meromorphic
function f (whose poles lie in E) such that for each b in E, the difference

f (z) − pb(1∕(z − b)) − qb(z − b)

has a removable singularity at b and a zero at b of order at least 1+deg qb. In other words, you can
prescribe not only the principal part of the Laurent series (the terms having negative exponents)
but additionally a finite number of terms having positive exponents.

Remark The special case that each polynomial pb is identically zero produces a holomorphic
function with finitely many terms of the Taylor series prescribed at each point b, thus generalizing
the interpolation problem.

Suggestion Use the Weierstrass theorem to find a holomorphic function g having for each b
a zero at b of order 1 + deg qb. Then use the basic version of Mittag-Leffler’s theorem to find a
meromorphic function ℎ having for each b the same principal part at b as the quotient

pb(1∕(z − b)) + qb(z − b)
g(z)

.

Set f equal to the product gℎ and verify that the required properties hold.

Removing extraneous zeroes

So far you have constructed ameromorphic functionwith finitelymany terms of the Laurent series
prescribed at points of E, and the function has no poles outside of E. The constructed function
might, however, have some zeroes at points outside of E, for the basic version of Mittag-Leffler’s
theorem does not control the location of zeroes. Your final task is to modify the construction in
such a way that the prescribed terms of the Laurent series at the given points are left unchanged,
but the final meromorphic function has neither zeroes nor poles outside of E.

Suggestion Let f denote the meromorphic function already constructed. Apply the theorem
of Weierstrass to construct a meromorphic function ' having zeroes and poles of the same orders
as f at the points ofE and having no other zeroes or poles. (But theWeierstrass theorem gives no
control on the coefficients of the Laurent series of '.) Locally near each point b, the quotient f∕'
has a removable singularity and is nonzero (why?), so there exists a local holomorphic branch of
log(f∕'). By a previous construction, you know how to build a holomorphic function  on G
that agrees to suitably high order (how high?) at each b with log(f∕'). Verify that 'e is the
required final meromorphic function.
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