
Class Notes
Math 618: Complex Variables II

Spring 2016

Harold P. Boas
updated April 29, 2016

Contents

1 Introduction 2

2 Normal families and the Riemann mapping theorem 3
2.1 Outline of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 A metric on analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Compactness inH(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Aside on non-normal families . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 The Julia set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Normal families on the qualifying examination . . . . . . . . . . . . . . . . . . 11
2.7 Applications of convergence inH(G) . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Proof of the Riemann mapping theorem . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Aside on self-mappings of the disk . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10 Conclusion of the proof of the Riemann mapping theorem . . . . . . . . . . . . 15
2.11 Remarks on normality of families of meromorphic functions . . . . . . . . . . . 16
2.12 Remark on Exercise 9 in §4 of Chapter VII . . . . . . . . . . . . . . . . . . . . 17

3 Infinite products and applications 19
3.1 Convergence of infinite products . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The Weierstrass factorization theorem for entire functions . . . . . . . . . . . . . 22
3.3 Prescribed zeroes on general regions . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Approximation 26
4.1 Sketch of the proof of Runge’s theorem . . . . . . . . . . . . . . . . . . . . . . 26

1



4.2 Mergelyan’s theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Mittag-Leffler’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Hadamard’s factorization theorem 30
5.1 Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Statement of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Jensen’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Application of Jensen’s formula to the rank . . . . . . . . . . . . . . . . . . . . 38
5.6 Carathéodory’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Conclusion of the proof of Hadamard’s factorization theorem . . . . . . . . . . . 41

6 Harmonic functions 43
6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Poisson integral on the disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 The Dirichlet problem for the disk . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 Badly behaved harmonic conjugates . . . . . . . . . . . . . . . . . . . . . . . . 47
6.5 The small-circle mean-value property . . . . . . . . . . . . . . . . . . . . . . . 48
6.6 Harnack’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Dirichlet problem on general domains 49
7.1 Dirichlet problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Subharmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3 Hadamard’s theorems on three lines and three circles . . . . . . . . . . . . . . . 53
7.4 Perron’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.5 Return to the solution of the Dirichlet problem . . . . . . . . . . . . . . . . . . . 57
7.6 Remarks on barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.6.1 Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.6.2 Necessity and sufficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.6.3 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.6.4 Bouligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.7 Construction of peak functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.8 Wiener’s criterion for regularity . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 The range of holomorphic functions 63
8.1 Bloch’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Schottky’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.3 Proofs of Picard’s theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1 Introduction

There are three general themes for this semester:
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• convergence and approximation of holomorphic (and harmonic) functions,
• conformal mapping, and
• the range of holomorphic functions.

The first item includes infinite products, the Weierstrass factorization theorem, Mittag-Leffler’s
theorem, normal families, and Runge’s approximation theorem. The second item includes the
Riemann mapping theorem. The third item includes Picard’s theorems. The emphasis is on
techniques that are constructive, at least in principle.

2 Normal families and the Riemann mapping theorem

The Riemann mapping theorem says that every simply connected planar region (other than the
whole plane ℂ and the empty set) is conformally equivalent to the open unit disk. In other words,
there exists a bijective analytic function mapping the region onto the unit disk. [A satisfactory
working definition of “simply connected” in the setting of open subsets of ℂ is a connected open
set whose complement with respect to the extended plane ℂ∞ is connected.]

The inverse function is automatically analytic by Corollary 7.6 to the open mapping theorem
in §IV.7 of the textbook. Thus the Riemann mapping function could be called “bianalytic,” but
a more common terminology is “biholomorphic” (since “holomorphic function” is a standard
synonym for “analytic function”). The Riemann mapping function can also be called a “con-
formal mapping,” since injective (or even locally injective) analytic functions are conformal (by
Exercise 4 in §IV.7 and Theorem 3.4 in §III.3).

The word “conformal” is used ambiguously in the literature. Some authors assume that confor-
mal mappings are injective, but other authors allow conformal mappings to be locally injective but
not globally injective. The exponential function ez, for example, preserves angles between inter-
secting curves but is not globally injective. The term “biholomorphic mapping” is unambiguous:
such a mapping is both bijective and holomorphic. Another reason to prefer the term “biholo-
morphic mapping” is that this concept generalizes usefully to higher dimension, but “conformal
mapping” does not. You can change angles in ℂ2 even with a complex-linear transformation, so
biholomorphic mappings inℂ2 typically are not conformal. In the early days of multidimensional
complex analysis, biholomorphic mappings were called “pseudoconformal,” but that terminology
was subsequently discarded.

The Riemann mapping theorem can be viewed as saying that the nonvoid simply connected
planar regions consist of precisely two biholomorphic equivalence classes: one class is a singleton
consisting of the whole plane, and the other equivalence class contains all other simply connected
planar regions. Accordingly, function theory on simply connected regions bifurcates into two
subtheories: (1) the theory of entire functions and (2) the theory of analytic functions on the unit
disk. Both of these theories will be addressed this semester.

For multiply connected planar regions, on the other hand, there are infinitely many different
biholomorphic equivalence classes. Two annuli { z ∈ ℂ ∶ r1 < |z| < R1 } and { z ∈ ℂ ∶
r2 < |z| < R2 } are biholomorphically equivalent if and only if the ratios R1∕r1 and R2∕r2 are
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equal to each other (in which case the first annulus can be mapped onto the second by a dilation;
see Exercise 8 in §VII.4). In higher dimension, the situation is vastly more complicated than
in ℂ1: even for simply connected domains in ℂ2, there are infinitely many distinct biholomorphic
equivalence classes.

2.1 Outline of the proof

The standard modern proof of the Riemann mapping theorem consists of three steps.
1. Formulate a suitable extremal problem in the space of analytic functions mapping the given

simply connected region into (but not necessarily onto) the unit disk.
2. Show that an extremal function exists.
3. Show that the extremal function is surjective (because if not, a new function could be con-

structed that contradicts the extremality).
The second step has the flavor of finding a limit point. A natural tool for implementing this step is
a metric on the space of analytic functions on an open set. Developing that tool is the next topic.

2.2 A metric on analytic functions

A convenient starting point is a metric on the spaceC(K) of continuous complex-valued functions
defined on a compact subsetK of ℂ. There is a standard norm on the space C(K), the supremum
norm:

‖f‖K = max{ |f (z)| ∶ z ∈ K }.

The norm induces a metric (the distance between f and g is ‖f − g‖K), and convergence with
respect to this metric is uniform convergence (so the metric is called the uniform metric). To say
that fn → f uniformly on K is precisely the statement that ‖fn − f‖K → 0.

You know from real analysis that in the metric space ℂ (and more generally in Euclidean space
of arbitrary dimension), the compact sets are precisely the sets that are simultaneously closed
and bounded (the Heine–Borel theorem, named after the German mathematician Eduard Heine
[1821–1881] and the French mathematician Émile Borel [1871–1956]).1
The analogous equivalence is not valid in the space C(K). Indeed, if K is the closed unit disk,

then the sequence {zn}∞n=1 of monomials has no subsequence converging to a continuous function
onK , for the sequence converges pointwise to 0 on the open unit disk but is constantly equal to 1
at the point 1. Thus the sequence is not compact as a subset of C(K), although the sequence is
bounded (being a subset of the C(K) closed unit ball) and is trivially closed (since the sequence
has no limit point in the space).

You may know a generalization of the Heine–Borel theorem to general metric spaces: namely,
a subset of a metric space is compact if and only if the set is simultaneously complete (Cauchy
1Apparently, this theoremwas in the air in the second half of the nineteenth century, Heine being only one of several
mathematicians who used the idea; Borel seems to have made the first explicit statement.
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sequences converge) and totally bounded (the set can be covered by a finite number of arbitrarily
small balls).

The characterization of compact subsets of the metric space C(K) in function-theoretic terms
is a famous proposition from the late nineteenth century. The theorem uses the following two
notions. A setS of functions onK is called pointwise bounded if for each point z inK there exists
a constantM such that |f (z)| ≤M for every function f inS (the value ofM is allowed to depend
on the point z but not on the function f ). A set S of functions on K is called equicontinuous if
for every point z in K and for every positive " there is a positive � such that |f (z) − f (w)| < "
whenever f ∈ S and |z − w| < � (the value of � possibly depending on the point z but not
depending on the function f ).
Theorem (Arzelà–Ascoli theorem). A subset of C(K) is compact if and only if the subset is
simultaneously closed, pointwise bounded, and equicontinuous.

Exercise. On a compact set, equicontinuity at every point is equivalent to uniform equicontinuity:
the value of � actually can be taken to be independent both of the point z and of the function f .
(The proof is analogous to the proof that a continuous function on a compact set is automatically
uniformly continuous.)

Although pointwise boundedness on a compact set is not equivalent to uniform boundedness
(think of a sequence of triangle functions with increasingly steep peaks condensing at the origin),
the proof of the theorem yields that in the presence of equicontinuity, pointwise boundedness
does imply uniform boundedness on compact sets.

The theorem is due to the Italian mathematician Giulio Ascoli (1843–1896) in a paper of 1884
in which he introduced the notion of equicontinuity. It seems that Cesare Arzelà (1847–1912)
actually published the idea of equicontinuity a year or so earlier than Ascoli did. Subsequently, in
1889 and in 1896, Arzelà (notice the grave accent) clarified, extended, and applied the theorem.
So technically it may be Ascoli’s theorem, but Arzelà’s work popularized the theorem, and Arzelà
even had the key concept earlier.
Proof of the Arzelà–Ascoli theorem. In a metric space, compactness is the same as sequential
compactness. Accordingly, what needs to be shown for the sufficiency of the conditions is that
if {fn} is a pointwise bounded, equicontinuous sequence in C(K), then there is a subsequence
that converges uniformly on K (necessarily to an element of C(K), since the uniform limit of
continuous functions is continuous). An equivalent statement is that there is a subsequence for
which Cauchy’s criterion for convergence holds uniformly.

Take a dense sequence {zn} in K . (To construct the sequence, cover the set K with a mesh of
closed squares with sides of length 1∕k, pick a point ofK in each cell that intersectsK , increase k,
and iterate to produce the dense sequence. For a nice set K , say the closure of an open set, you
could take the points of K having both coordinates rational.)
The sequence of complex numbers {fn(z1)} is bounded (by one of the hypotheses), so the

Bolzano–Weierstrass theorem provides an initial increasing sequence {j1(n)} of natural numbers
such that the sequence {fj1(n)(z1)} converges. There is a subsequence {j2(n)} such that {fj2(n)(z2)}
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converges (and {fj2(n)(z1)}, being a subsequence of {fj1(n)(z1)}, converges too). Iterate this pro-cess. The diagonal sequence {fjn(n)} converges at the point zk for every k. Call this diagonal
sequence of functions {gn} for short.The uniform equicontinuity forces this diagonal sequence {gn} to converge everywhere on K
(and uniformly) by the following argument. If a positive " is specified, then there is a positive �
such that if |z−w| < �, then |f (z) − f (w)| < " for every function f in the original sequence of
functions. The triangle inequality implies that

|gn(z) − gm(z)| ≤ |gn(z) − gn(zk)| + |gn(zk) − gm(zk)| + |gm(zk) − gm(z)|

for an arbitrary value of k. For each fixed z, there is some point zk in the specified dense set suchthat |z−zk| < �. Hence the first and third terms on the right-hand side of the preceding inequality
each can be made less than " by a suitable choice of zk. For a fixed zk, the middle term will be
less than " when n and m are sufficiently large, in view of the convergence of the sequence {gn}at the points of the dense set. Consequently, the diagonal sequence satisfies Cauchy’s criterion
uniformly on K .

To prove the converse direction of the theorem, first observe that a compact subset of a metric
space always is closed. If a compact set of functions fails to be uniformly bounded, then there is
a sequence {fn} of functions in the set and a sequence {zn} of points in K such that |fn(zn)| > nfor each natural number n. There is an increasing sequence {n(k)} such that the sequence {zn(k)}converges to some point z in the compact set K and the sequence {fn(k)} converges uniformly to
some function f in C(K). Then fn(k)(zn(k))→ f (z), but also fn(k)(zn(k))→∞. The contradiction
shows that a compact set of functions is necessarily uniformly bounded on K .

If a compact set of functions fails to be uniformly equicontinuous, then there exists some pos-
itive " such that for every natural number n there are points zn and wn and a function fn in the
set such that |zn − wn| < 1∕n but |fn(zn) − fn(wn)| ≥ ". Compactness implies that there is
an increasing sequence {n(k)} such that the sequence {zn(k)} converges to a point z in K , the
sequence {wn(k)} converges to a point w in K , and the sequence {fn(k)} converges uniformly to
a continuous function f such that |f (z) − f (w)| ≥ ", but |z −w| ≤ 0. The contradiction shows
that a compact set of functions must be uniformly equicontinuous after all.
There is a standard method for bootstrapping the metric on C(K) to a metric on C(G), the

space of continuous functions on an open set G in ℂ. First notice that ‖f − g‖K∕(1 + ‖f − g‖K)defines a bounded metric that determines the same topology (the same convergent sequences) on
C(K) as does the metric ‖f −g‖K . (To verify the triangle inequality, observe that the real-valuedfunction x∕(1 + x) on the positive real numbers is both increasing and subadditive.)

A standard construction produces an increasing sequence {Kn} of nonempty compact sets that
exhaust G in the sense that the union⋃∞

n=1Kn = G, and every compact subset K of G is a subset
ofKn when n is sufficiently large. IfG = ℂ, then takeKn to be the closed ball of radius n centeredat the origin. If G is a proper subset of ℂ, then fix a particular point z0 in G, and define Kn to bethe set of points of G whose distance from z0 is less than or equal to n and whose distance from
the complement ofG is greater than or equal to 1∕n times the distance of z0 from the complement
of G.
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This exhaustion has two additional useful properties. The construction implies that for each n,
the set Kn is contained in the interior of Kn+1. Moreover, the set Kn has no unnecessary holes, inthe sense that each component of ℂ∞ ⧵Kn contains a component of ℂ∞ ⧵G. To see why, observe
thatℂ∞⧵G is a subset ofℂ∞⧵Kn, so each component ofℂ∞⧵G is contained in some component
of ℂ∞ ⧵Kn. The only question, then, is whether every component of ℂ∞ ⧵Kn intersects ℂ∞ ⧵G.
If z is an arbitrary point in ℂ∞ ⧵ Kn, then either z = ∞, or |z| > n, or there is a point w in
the boundary of G such that |w − z| < 1∕n. In the first two cases, the component of ℂ∞ ⧵ Kncontaining z intersects ℂ∞ ⧵ G at ∞. In the third case, the open ball B(w; 1∕n) is a connected
set that lies in ℂ∞ ⧵ Kn and hence lies in the component of ℂ∞ ⧵ Kn containing z, which thus
intersects ℂ∞ ⧵ G at w.

Having fixed an exhaustion {Kn} of G once and for all, define d(f, g) as follows:

d(f, g) =
∞
∑

n=1

‖f − g‖Kn
1 + ‖f − g‖Kn

⋅
1
2n
.

Evidently this function d defines a metric on C(G) that is bounded by 1.
The metric depends on the choice of the exhaustion, but the topology is independent of the

choice. Indeed, convergence with respect to this metric is the same as uniform convergence on
every compact subset of G, for the following reason. Convergence in this metric implies, in
particular, uniform convergence on each individual compact set Kn and hence on an arbitrary
compact set. Conversely, if uniform convergence happens on each compact set, and a positive "
is fixed, then chopping off the tail at a point where ∑

n≥N 1∕2n < "∕2 and invoking uniform
convergence on KN shows that convergence happens in the metric d.
Theorem (Arzelà–Ascoli revisited). A subset of C(G) is relatively compact (that is, has compact
closure) if and only if this set of functions is pointwise bounded and pointwise equicontinuous.

Proof. If {fn} is a pointwise bounded and pointwise equicontinuous sequence in C(G), then thefirst version of the theorem produces a subsequence that converges uniformly on K1, the first setin the exhaustion ofG. There is a further subsequence that converges uniformly onK2, and so on.The diagonal subsequence converges uniformly on every compact subset of G, that is, converges
in C(G). This conclusion proves one direction of the theorem.

For the converse, suppose a sequence of functions is not bounded at some point. Then there
is a subsequence that blows up at the point. Evidently no further subsequence can converge in
C(G). Therefore the original sequence cannot be a relatively compact subset of C(G). Similarly,
a relatively compact sequence of functions cannot fail equicontinuity at a point, for passing to a
locally uniformly convergent subsequence gives a contradiction by a 3" argument.

2.3 Compactness in H(G)
The next goal is to characterize compactness in the spaceH(G) of holomorphic functions on the
open set G. The first observation is that H(G) is a closed subspace of C(G). In other words,
if a sequence of holomorphic functions converges uniformly on compact sets to a (necessarily)
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continuous limit function, then the limit function is holomorphic. Since holomorphicity can be
tested by integration over closed curves, which are compact sets, the observation follows directly
from Morera’s theorem or from Cauchy’s integral formula.
Theorem (One of Montel’s theorems). A set of functions in H(G) is relatively compact if and
only if the set of functions is locally bounded.

The theorem comes from Paul Montel’s 1907 thesis, written under the direction of Borel and
Lebesgue. A set of functions satisfying the condition of the theorem is called a normal family in
Montel’s terminology. Montel published in 1927 a book titled Leçons sur les familles normales
de fonctions analytiques et leurs applications. Some authors (including Montel himself) allow
the term “normal family” to be a bit more general, allowing the possibility that the limit of a
subsequence is identically equal to the constant ∞. This generalization amounts to working in-
side the space C(G,ℂ∞) of continuous functions taking values in the extended complex numbers
(equipped with the spherical metric) instead of inside the space C(G,ℂ) of continuous functions
taking values in the finite complex numbers.

Incidentally, Texas A&M Distinguished Professor Emeritus Ciprian Foias is a mathematical
grandson of Montel (1876–1975) through Miron Nicolescu (1903–1975), and two mathematical
grandsons of Foias himself are on the faculty (Michael Anshelevich and Kenneth Dykema, both
students of Dan-Virgil Voiculescu). Visiting Assistant Professor Paul Skoufranis is a mathemat-
ical great-grandson of Foias through Voiculescu and his student Dimitri Shlyakhtenko.
Proof. For the sufficiency, what needs to be shown is that a locally bounded family of holomor-
phic functions is equicontinuous at each point. By Cauchy’s estimate for the first derivative, the
family of derivatives of a locally bounded family is again a locally bounded family (one has to
shrink disks, but the property is local, so shrinking is allowable). Hence the functions in the orig-
inal family are Lipschitz with a Lipschitz constant that is locally bounded independently of the
function. Equicontinuity evidently follows.

The converse, that a normal family of holomorphic functions must be locally bounded, follows
from a previous observation that pointwise boundedness in the presence of equicontinuity implies
local boundedness.
Example. The set of holomorphic functions mapping an open set G into the unit disk is a normal
family. Indeed, the family is not only locally bounded but even bounded. This example will be
used in the proof of the Riemann mapping theorem.
Example. The set of holomorphic functions mapping an open set G into the upper half-plane is a
normal family. To see why, observe that H(G) is a metric space, so compactness is the same as
sequential compactness. What needs to be shown, then, is that if {fn}∞n=1 is a sequence of holo-morphic functions taking values in the upper half-plane, then there is a subsequence converging
uniformly on each compact subset of G.

Let ' denote the linear fractional function sending a point z in the upper half-plane to the point
z − i
z + i

. Points in the upper half-plane are closer to i than to−i, that is, |z−i| < |z+i|, so'maps the
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upper half-plane to the unit disk. The sequence {'◦fn} of composite functions fits the previous
example, so there is a subsequence converging uniformly on compact sets. Composing with the
biholomorphic mapping '−1 preserves the convergence, so the corresponding subsequence of the
original sequence {fn} converges uniformly on compact subsets of G.

The preceding examples can be pushed further. The philosophy is that if the common range of
a family of holomorphic functions is not too big, then the family is normal. How big is too big?

Evidently the whole of ℂ is too big, for the family of functions exp(nz) (where n runs through
the natural numbers) is not locally bounded for z in the unit disk. The same example shows
that the punctured plane ℂ ⧵ {0} is still too big for the range of the functions. Remarkably, the
twice-punctured plane is small enough.
Theorem (Montel’s fundamental normality criterion). The family of holomorphic functions map-
ping an open set G into ℂ ⧵ {0, 1} (the twice-punctured plane) is a normal family in the extended
sense that every sequence of such functions either admits a subsequence that converges uniformly
on compact sets to a holomorphic function or admits a subsequence that converges uniformly
to∞.

Of course, the values 0 and 1 could be replaced by two arbitrary distinct complex numbers
a and b (the same numbers for all members of the family of functions). Simply make a linear
fractional transformation that fixes∞ and moves the points a and b to 0 and 1.

Notice that the theorem provides a sufficient condition for normality, but the condition is not
necessary. A family of functions might be normal even though there is no omitted value. A
simple example in the setting of entire functions is the family consisting of a single nonconstant
polynomial: the range is all of ℂ, and a singleton set is always compact.

The name “fundamental criterion” (critère fondamental) is due to Montel himself. Montel’s
fundamental criterion is quite deep. Indeed, an easy proof of Picard’s theorem is a consequence.
The proofs of Montel’s criterion and Picard’s theorem are deferred until later. (Both theorems
appear in Chapter XII of the textbook.)

2.4 Aside on non-normal families

Concerning Montel’s necessary and sufficient condition for the restricted notion of normality, the
question arises of exhibiting a family of functions in H(G) that is pointwise bounded but not
locally bounded. The difficulty of writing down a concrete example is revealed by the following
observation.
Theorem. If G is an open subset of ℂ, and  is a pointwise bounded family of continuous
functions on G, then there is a dense open subset of G on which the family  is locally bounded.

Proof. Consider an arbitrary closed disk D contained in the open set G. Equipped with the
standard topology inherited from ℂ, the diskD is a complete metric space, so the Baire category
theorem is applicable. [Baire’s theorem says that a complete metric space cannot be expressed
as the union of countably many nowhere dense sets; equivalently, the intersection of countably
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many dense open sets is still dense.] For each natural number n, let En denote the set of pointsof D at which all functions belonging to the family  are bounded (in absolute value) by the
value n. Continuity of the functions implies that each set En is a closed set. By hypothesis, everypoint of D lies in some En. By the Baire category theorem, there is some value of n for which
the set En has nonvoid interior.Let SD denote the interior of the indicated subset En of D. Now let D vary over all closed
disks contained inG, and let S denote the union of the corresponding SD sets. Then S is an open
subset of G; and S is dense in G because S intersects every neighborhood; and every point of S
has a neighborhood on which the family  is bounded. Thus S is the required dense open subset
of G on which the family  is locally bounded.

The preceding theorem reveals that examples of pointwise bounded but not locally bounded
families of holomorphic functions must be somewhat tricky, since local boundedness has to hold
on a dense subset. One way to construct examples is to apply a significant upcoming theorem,
Runge’s approximation theorem (the proof of which is deferred until later).
Theorem (First version of Runge’s approximation theorem). If K is a compact subset of ℂ, pos-
sibly disconnected but without holes (that is, ℂ ⧵ K is connected), then every function that is
holomorphic on an open neighborhood of K can be uniformly approximated on K by holomor-
phic polynomials.

The wording “holomorphic polynomial” sounds redundant but is not. The function Re(z2) is a
nonholomorphic polynomial (a polynomial in the underlying real variables). What is wanted in
the theorem is a polynomial in the complex variable. A more precise statement of the conclusion
of the theorem is that if f (z) is holomorphic in a neighborhood of K , then there is a sequence
{pn(z)}∞n=1 of polynomials such that maxz∈K |f (z) − pn(z)| → 0 when n →∞.
Example. There exists a sequence {pn(z)} of polynomials converging pointwise everywhere inℂ,
the limit being identically equal to 0 in the open upper half-plane and identically equal to 1 in the
closed lower half-plane. The convergence is certainly not uniform on compact sets, since the limit
function is not continuous. Since the sequence of functions is pointwise convergent, the sequence
is pointwise bounded. The sequence is not locally bounded, since the family is not normal.

To construct the example, apply Runge’s theorem on an increasing sequence {Kn} of discon-nected compact sets. Let Kn be the union of two closed rectangles, one in the closed lower
half-plane with vertices at the points −n, n, n − in, and −n − in, and the other in the open upper
half-plane with vertices at −n+ i∕n, n+ i∕n, n+ in, and −n+ in. Evidently these rectangles form
an increasing sequence whose union is the whole plane.

The piecewise-constant function that equals 0 when Im z > 1∕(2n) and 1 when Im z < 1∕(2n)
is holomorphic on an open set containingKn, a compact set having no holes, so by Runge’s theo-
rem there exists a holomorphic polynomial pn that approximates this piecewise-constant function
uniformly on Kn with error less than 1∕n. In other words, |pn(z)| < 1∕n when z is in the top
rectangle, and |pn(z) − 1| < 1∕n when z is in the bottom rectangle.
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Consequently, pn(z) → 0 locally uniformly in the open upper half-plane, and pn(z) → 1 uni-
formly on each compact subset of the closed lower half-plane. The convergence is not uniform
on any neighborhood of a point on the real axis.

2.5 The Julia set

Normal families appear in the theory of iteration of holomorphic functions. Suppose p(z) is a
polynomial, and consider the sequence p◦p, p◦p◦p, . . . of iterates. The largest open subset of ℂ
on which the sequence of iterates is a normal family is called the Fatou set of p. The complement
of the Fatou set is the Julia set. These notions are interesting already for quadratic polynomials.
The names honor the French mathematicians Pierre Fatou (1878–1929), who is known not only
for his work in complex analysis but also for Fatou’s lemma in the theory of integration; and
Gaston Julia (1893–1978), whose work on iteration of rational functions made him famous at
age 25.

2.6 Normal families on the qualifying examination

Here are some problems involving normal families that appeared on past qualifying examinations.
• Problem 4 on the January 2010 qualifying exam asks you to prove normal convergence

given convergence at one point and convergence of the real parts.
• Problem 9 on the August 2010 qualifying exam asks you to prove for a bounded family of

harmonic functions that convergence on a subdomain implies normal convergence through-
out.

• Problem 8 on the August 2011 qualifying exam asks about local boundedness of the iterates
of the sine function.

• Problem 5 on the January 2013 qualifying exam asks about normality of functions in the
unit disk satisfying the bound in the Bieberbach conjecture.

• Problem 9 on the August 2014 qualifying exam asks about self-mappings of the unit disk
converging normally to a constant.

• Problem 9 on the January 2015 qualifying exam asks about normality of iterates of the
logarithm on the upper half-plane.

2.7 Applications of convergence in H(G)
Theorem. If a sequence of holomorphic functions converges normally (uniformly on compact
sets), then so does the sequence of derivatives.

Theorem (Hurwitz). If G is a connected open set, and {fn} is a sequence of zero-free holo-
morphic functions converging uniformly on compact sets to a limit function f , then either f is
zero-free or f is identically equal to zero.
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Corollary. If G is a connected open set, and {fn} is a sequence of injective holomorphic func-
tions converging uniformly on compact sets to a limit function f , then either f is injective or f is
constant.

This corollary is Exercise 10 in §2 of Chapter VII.
Proof that derivatives inherit normality. The derivative of a holomorphic function is represented
by an integral, and uniform convergence of the integrands implies convergence of the integrals.
Since the Cauchy integral kernel is uniformly bounded when the free variable is bounded away
from the integration curve, the convergence is uniform on compact sets.
Proof of Hurwitz’s theorem. Notice that the second case can occur: consider, for example, the
sequence {zn} on the open unit disk with a puncture at the origin.
If f (z0) = 0, but f is not identically equal to 0, then f has no zeroes in some punctured

neighborhood of z0 (since the zeroes of f are isolated). Therefore ifD is a sufficiently small disk
centered at 0 whose closure is contained in G, the function f has no zero on the boundary of D.
Then

1
2�i ∫)D

f ′n(z)
fn(z)

dz→ 1
2�i ∫)D

f ′(z)
f (z)

dz.

The integral counts the number of zeroes of the function inside D. Since the approximating
integrals all are equal to 0, and the limiting integral is equal to 1, a contradiction arises.
Proof of corollary. Fix a point z0 inG. The function that sends z to fn(z)−fn(z0) is zero-free onthe regionG⧵{z0} by hypothesis. Hurwitz’s theorem implies that the limit function f (z)−f (z0)is either zero-free or identically zero on G ⧵ {z0}. Since z0 is arbitrary, the function f on G takes
each value in its range only once, unless the function is constant.
Theorem (Vitali’s theorem). If {fn} is a normal family of holomorphic functions on a connected
open set G, and if the sequence converges pointwise on a subset of G that has an accumulation
point in the interior of G, then the sequence of functions converges normally on all of G.

The theorem is named for the Italian mathematician Giuseppe Vitali (1875–1932), who is
known also for an example of a nonmeasurable set of real numbers. The result is sometimes
called the Vitali–Porter theorem, since M. B. Porter discovered the theorem independently at
about the same time. Vitali’s theorem is Exercise 4 in §2 of Chapter VII.
Proof. Every subsequence of {fn} has a further subsequence that converges normally to a holo-
morphic limit function. By hypothesis, all of these limit functions agree on a set that has a limit
point, so by the identity theorem, all of the limit functions agree identically onG. Call this unique
common limit g. If there were a compact setK on which the sequence {fn} fails to converge uni-formly to g, then there would be a positive " and a subsequence {fnk} such that ‖fnk − g‖K ≥ "
for every k. But the subsequence {fnk} has a further subsequence that does converge uniformly
on K to g. This contradiction completes the proof.
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2.8 Proof of the Riemann mapping theorem

The first complete proof apparently is due to Carathéodory in 1912; he produced the map as
the limit of a sequence of maps. The modern proof via an extremal problem is due to Fejér
and Riesz, published with permission by Radó in 1922. The square-root trick to cook up an
improved mapping apparently is due to Carathéodory and Koebe. Fejér and Riesz make the
explicit computation; the method for avoiding the computation seems to be due to Ostrowski and
Carathéodory. Carathéodory’s method (given below) avoids taking derivatives.
Remark. The Riemann map certainly is not unique, for one can post-compose with an arbitrary
automorphism of the disk. The map can be made unique in various ways. For instance, if a
point z0 in G is chosen that maps to 0, and if the derivative of the mapping at z0 is specified to
be a positive real number, then the mapping is unique. Indeed, if f and g are two such maps,
then f◦g−1 is an automorphism of the unit disk fixing the origin and having positive derivative
at the origin. The Schwarz lemma (discussed below) implies that such a map is a rotation, and
the positivity of the derivative forces this composite map to be the identity rotation.

Another way to ensure uniqueness is to choose two distinct points z0 and z1 in G and demand
that z0 maps to 0 and z1 maps to a positive real value. Again, if f and g are two such maps,
then f◦g−1 is an automorphism of the disk that fixes 0 and maps some positive real number to a
positive real number. Hence f◦g−1 is a trivial rotation.
Proof of existence. The outline of the proof is the following. Consider the family of all injective
holomorphic functions that map the given simply connected region G into (not necessarily onto)
the unit disk, taking a specified point z0 to 0. The goal is to find a mapping in this normal family
that makes the image fill out as much of the disk as possible. Namely, there is an extremal function
that maximizes the modulus of the value of the map at a second specified point z1. This extremal
function must be the required holomorphic bijection, else a new function could be constructed
that increases the value at z1.An alternative extremal problem—the one used in the textbook—is to maximize the absolute
value of the derivative of the mapping function at z0. “There is more than one way to do it.”

Numerous details need to be filled in.
First of all, are there any injective holomorphic functions mapping G into the unit disk? If G

were the whole plane, then there would be no nonconstant maps (by Liouville’s theorem), hence
the exclusion of the plane is necessary in the statement of the theorem.

If G is a bounded region, then there are lots of injective maps into the unit disk: translate G to
move z0 to the origin, then dilate by a suitable factor less than 1.What if G is unbounded? Since G is not the whole plane, there is at least one point b in the
complement of G. If b is an interior point of ℂ ⧵ G, then an inversion with respect to b maps G
into a bounded region, and the previous case can be invoked. So the hard case is the case in which
the complement of G has empty interior: the region G could be the plane with a slit, for instance.

If b is a point in the complement of G, then z − b is a zero-free holomorphic function on G
(a simply connected region), so there is a holomorphic branch of √z − b on G. Evidently this
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square root is injective (if not, then z − b would not be), so what needs to be shown is that the
image of G under√z − b omits some disk, thus reducing to the previous case.

Now if c is a point in the image of√z − b (and c is necessarily different from zero, since z−b is
zero-free onG), then the point−c is not in the image: for if both√z2 − b = c and

√

z3 − b = −c,
then squaring shows that z2 − b = z3 − b, a contradiction. Since

√

z − b is an open map, a whole
neighborhood of c is in the image, so a neighborhood of −c is not in the image. Thus the previous
case produces an injective map ofG into the unit disk. Composing with a suitable automorphism
of the disk will arrange that the specified point z0 goes to the origin.Fix a point z1 in G different from z0. Take a sequence in the family for which the absolute
value of the function at z1 approaches the least upper bound of all such values. There is a subse-quence converging normally to a holomorphic limit function f . Evidently f (z0) = 0, and |f (z1)|achieves the extreme value in the family. In particular, f (z1) is different from f (z0). Thereforethe limit function is not constant, so f is injective, being the limit of injective holomorphic func-
tions. The function f a priori maps into the closed unit disk, but by the maximum principle the
image lies in the open unit disk. Thus f is indeed an extremal function within the family.

What remains to show is that the extremal function is surjective. The argument is by contra-
diction. Suppose a nonzero point c in the disk is not in the image of f . The goal is to produce a
contradiction by finding a new function in the family whose value at z1 has absolute value largerthan |f (z1)|.

2.9 Aside on self-mappings of the disk

The plan is to compose f with holomorphic mappings of the disk into itself, and such mappings
are interesting for their own sake. Here is the first observation.
Lemma (Schwarz lemma). Suppose f is a holomorphic function (not necessarily injective, not
necessarily surjective) that maps the unit disk into itself, fixing the origin. Then either f is a
rotation, or |f (z)| < |z| when z ≠ 0. In the latter case, |f ′(0)| < 1.

Proof. Since f (0) = 0, the quotient f (z)∕z has a removable singularity at the origin. On a circle
of radius r less than 1, this quotient has absolute value bounded above by 1∕r. The maximum
principle implies that |f (z)∕z| ≤ 1∕r when |z| ≤ r. Keeping z fixed, let r tend to 1 to deduce
that |f (z)∕z| ≤ 1 for every value of z in the unit disk. In other words, |f (z)| ≤ |z| for every z in
the unit disk.

If equality holds for some nonzero value of z, then the function |f (z)∕z| attains a maximum at
an interior point, hence is constant by the maximum principle. The constant value has modulus
equal to 1, so f is a rotation. The removable singularity of f (z)∕z is removed by setting the value
at the origin equal to f ′(0), so |f ′(0)| ≤ 1, and the maximum principle again implies that equality
holds only if f is a rotation.
The Schwarz lemma implies that the solution of the extremal problem under consideration in

the proof of the Riemann mapping theorem is necessarily surjective if G is already the unit disk.
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Indeed, suppose z0 is 0, and consider a holomorphic function f (whether injective or not) that
maps the unit disk into itself, taking 0 to 0. The Schwarz lemma implies that if z1 is another pointin the unit disk, then |f (z1)| ≤ |z1|, and equality obtains if and only if the function f is a rotation.
Thus the extremal function—the function that realizes equality—is bijective.

What if z0 is some point other than 0? This situation can be reduced to the preceding special
case by using the knowledge that all points in the unit disk are equivalent to each other from the
point of view of complex analysis. More precisely, there exists a holomorphic bijection of the
disk that takes any prescribed point of the disk to any other prescribed point. In other words, the
holomorphic automorphism group of the disk is transitive.

To see why all points of the disk are equivalent, let c be a point of the open unit disk, and define
a function 'c as follows:

'c(z) =
c − z
1 − cz

.

Notice that 'c(c) = 0, and 'c(0) = c, so this function interchanges the points 0 and c. A routine
computation shows that

|

|

|

|

c − z
1 − cz

|

|

|

|

2

= 1 −
(1 − |c|2)(1 − |z|2)

|1 − cz|2
.

Since 1 − |c|2 > 0, the preceding identity shows that |'c(z)| < 1 when |z| < 1, and |'c(z)| = 1when |z| = 1. The composite function 'c◦'c maps the unit disk into itself and fixes the points
0 and c. By the remark following the proof of the Schwarz lemma, this composite function must
be the identity rotation. Accordingly, the function 'c is a self-inverse, holomorphic bijection of
the unit disk. (You could alternatively compute 'c◦'c algebraically to see that this composite
function reduces to the identity function.)

The most general holomorphic bijection of the unit disk is the composition of a rotation with
some 'c. Indeed, if ℎ is a holomorphic bijection of the disk fixing the origin, then the Schwarz
lemma implies that |ℎ(z)| ≤ |z| and |ℎ−1(z)| ≤ |z| for every point z in the disk. Therefore
|ℎ(z)| = |z| for every z, and the equality case of the Schwarz lemma implies that ℎ is a rotation.
Next, if ℎ is a holomorphic bijection of the disk that moves some point c to 0, then ℎ◦'c is aholomorphic bijection of the disk that fixes 0, hence is a rotation.

Here is a formula for a holomorphic automorphism of the unit disk that interchanges two pre-
scribed points z1 and z2:

'z1◦''z1 (z2)◦'z1 .

Being a composition of disk automorphisms, this function is a disk automorphism. Routine check-
ing shows that indeed this composite function takes z1 to z2 and z2 to z1.

2.10 Conclusion of the proof of the Riemann mapping theorem

Returning to the proof of the Riemann mapping theorem, notice that the hypothesized missing
point c is not 0, since f (z0) = 0. Under the hypothesis that c is not in the image of f , the function
'c◦f is zero-free in the simply connected region G, hence has a holomorphic square root, say g.
This function g is injective, for otherwise the square would not be injective. Now g maps the
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region G into the unit disk, but g does not belong to the specified family of functions, for g is not
normalized at z0. Indeed, 'c◦f (z0) = c, so g(z0) =

√

c for one of the two possible values of the
square root.

Set ℎ equal to '√

c ◦g. Then ℎ again maps G into the unit disk, and now ℎ(z0) = 0. What
remains to show (to reach the desired contradiction) is that |f (z1)| < |ℎ(z1)|. The plan now is to
unwind the definitions to relate f to ℎ.

On the one hand, g2 = 'c◦f , so f = 'c◦g2. (Notice that the notation g2 represents an algebraicsquare g×g, not a composition.) On the other hand, g = '√

c ◦ℎ, so g2 = ('√

c ◦ℎ)2 = ('√

c )2◦ℎ.
Therefore f = 'c◦('√

c )2◦ℎ. Now the function 'c◦('√

c )2 maps the unit disk to itself, fixing the
origin. By the Schwarz lemma, |'c◦('√

c )2(z)| ≤ |z| for every point z in the unit disk. Moreover,
if equality holds in the Schwarz lemma for even one nonzero point, then the function has to be a
rotation. But the map 'c◦('√

c )2 evidently is not a rotation, since this map is two-to-one (because
of the square). Therefore |'c◦('√

c )2(z)| < |z| for every nonzero point z in the disk, with strict
inequality.

Replacing z with ℎ(z1) in this inequality shows that
|f (z1)| = |'c◦('√

c)
2(ℎ(z1))| < |ℎ(z1)|,

so the function ℎ violates the extremality of f . The contradiction shows that the map f must be
surjective after all. Thus f is the required holomorphic bijection from G to the unit disk.

2.11 Remarks on normality of families of meromorphic functions

Section 3 of Chapter VII of the textbook proves a necessary and sufficient condition for normality
of a family of meromorphic functions on an open subset of ℂ, where the notion of convergence is
with respect to the spherical metric. A family of meromorphic functions is normal in this sense
if every sequence in the family has a subsequence that converges uniformly on compact sets with
respect to the spherical distance either to a meromorphic function or to the constant ∞. The
condition is local boundedness of the quantity

|f ′(z)|
1 + |f (z)|2

.

This quantity is known as the spherical derivative, and the theorem is due to Frédéric Marty
(1911–1940).

Marty introduced the notion of spherical derivative in his 1931 doctoral dissertation2 written
under the direction of Paul Montel. The characterization of normality of families of meromorphic
functions is Theorem 5 in §2 of Chapter I of the dissertation.

Marty was a casualty of the second world war. A lieutenant in the French air force, Marty had
a mission on June 14, 1940 (the day that Paris fell to German forces, and nine days before Marty’s
2F. Marty, Recherches sur la répartition des valeurs d’une fonction méromorphe, Annales de la faculté des sciences
de Toulouse, third series, 23 (1931), 183–261.
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29th birthday) to carry French diplomatic mail from Tallinn, Estonia across the Gulf of Finland
to Helsinki. At the time, both Estonia and Finland were technically neutral countries. But the
Soviet Union began a military blockade of Estonia on June 14, and the aircraft Kaleva on which
Marty was a passenger was intercepted by Soviet bombers and shot down—killing all nine on
board. The Soviet Union invaded Estonia two days later. War between Finland and the Soviet
Union broke out a year later, in June 1941.

The spherical derivative of f arises by dividing the spherical distance between f (z) and f (w)
by the Euclidean distance |z − w| and taking the limit as w approaches z. This calculation
apparently makes sense only away from the poles of the meromorphic function; but since the
spherical distance between f (z) and f (w) equals the spherical distance between 1∕f (z) and
1∕f (w), poles can be handled by the same method! Thus the elaborate computation on page 157
of the textbook to show that the spherical derivative �(f ) is well defined at poles is obviated by
the observation that �(f ) = �(1∕f ).

2.12 Remark on Exercise 9 in §4 of Chapter VII

The exercise asks for a proof of the existence of an analytic function without critical points (in
other words, an analytic function having zero-free derivative), the domain being the unit disk
punctured at the origin and the image being the whole unit disk. Although the problem can be
solved by available tools, the solution is far from obvious. The following remarks indicate why
the problem is hard (some natural attempts to solve the problem fail) and how you might possibly
be led to a solution.

The required function is locally injective (since the derivative is never zero) but cannot possi-
bly be globally injective. Indeed, the punctured disk is not homeomorphic to the disk, so there
certainly is no analytic bijection between these two open sets. (You could also apply the argu-
ment of Exercise 2 in the same section to see that global injectivity is impossible.) Moreover,
the required function cannot even be a covering map (in the sense of topology), since a doubly
connected space cannot cover a simply connected space. Accordingly, the required function is
a local homeomorphism that does not evenly cover the image. (In topology, “even covering” is
a technical term meaning that each point in the image has a neighborhood whose inverse image
consists of disjoint open sets each of which is mapped homeomorphically onto the neighborhood.)

On the other hand, the required function is somewhat nice in the sense that the function extends
to be analytic on the whole disk (by Riemann’s theorem on removable singularities). Therefore a
natural idea is to try to build the required function by taking the restriction to the punctured disk
of a suitable analytic function from the whole disk to the disk. The squaring function (z maps
to z2) does not work: this function maps the disk onto the disk, and the derivative has no zeroes in
the punctured disk, but the restriction of the function to the punctured disk fails to be surjective,
since 0 is not in the image of the restriction. If c is some nonzero point in the disk, and 'c isthe standard disk automorphism that interchanges 0 and c, then the square '2c fails for a differentreason. The restriction of'2c to the punctured disk nowmaps surjectively to the disk (for'c moves
the puncture to c, and the squaring function maps c and −c to the same value, so the hole fills in),
but '2c has a critical point at c. Similar considerations show that the map sending z to z'c(z) and
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the map sending z to 'b(z)'c(z) fail to solve the problem: both functions are surjective but have
a critical point.

Surprisingly, the related problem of mapping a twice-punctured disk onto the disk by an ana-
lytic function without critical points can be solved by modifying the preceding failed attempts.
This claim sounds strange at first, because making the domain smaller would seem to increase
the difficulty of filling out the desired image. The advantage of making the domain smaller is that
there is then more flexibility for avoiding critical points.

Indeed, fix some nonzero point c in the unit disk, and consider the function g that maps z to
z2'c(z). This function has exactly two critical points in the unit disk: one critical point at 0 and
another critical point b (different from both 0 and c) that you can compute by solving a quadratic
equation (whence the critical point is nondegenerate: g′(b) = 0 but g′′(b) ≠ 0). Viewed as a
mapping from the whole disk to the disk, the mapping g is three-to-one. (Evidently the value 0
is taken three times, at 0, 0, and c; since |g(z)| = 1 when |z| = 1, the argument principle can be
applied to show that every value in the disk is taken three times, counting multiplicity.) The three
points that map to the nonzero value g(b) are b, b, and something else that is neither 0 nor b. The
upshot is that if g is restricted to the disk with the points 0 and b removed, then g has no critical
points on this twice-punctured disk, and g maps the twice-punctured disk surjectively onto the
whole disk. (The points 0 and g(b) in the image are covered once each; all other points are covered
three times.)

In view of the preceding example, the original problem reduces to finding an analytic function
without critical points that maps the once-punctured disk onto a twice-punctured disk. Compos-
ing this function with the one just constructed produces the required mapping. (The chain rule
implies that composing two functions with zero-free derivatives yields another function with the
same property.)

Solving the new problem requires yet another example. The claim is that there exists an analytic
function ℎ without critical points mapping the unit disk onto the disk punctured at the origin,
values in the open upper half of the punctured disk being taken twice and values in the open
lower half of the punctured disk being taken once. Suppose for the moment that such an ℎ is
known. Let a be the unique point in the unit disk such that such that ℎ(a) = −i|b|. Then the
function i b

|b|
⋅ℎ◦'a has no critical point and maps the disk punctured at 0 onto the disk punctured

at 0 and b.
All that remains, then, is to construct the special function ℎ mapping the unit disk onto the

punctured disk. By the Riemann mapping theorem, there is a biholomorphic mapping from the
unit disk to the half-strip { z ∈ ℂ ∶ Re(z) < 0 and 0 < Im(z) < 3� }. [This map can even be
computed explicitly. Start with the linear fractional transformation 1 − z

1 + z
mapping the unit disk to

the right-hand half-plane. Compose with the principal branch of the square root. Multiply by ei�∕4
to rotate the image to the first quadrant. Compose with the linear fractional transformation z − 1

z + 1to map to the upper half of the unit disk. Compose with the principal branch of the logarithm
to map to the half-strip { z ∈ ℂ ∶ Re(z) < 0 and 0 < Im(z) < � }. Dilate by a factor of 3.]
Now compose with the exponential function to map onto the punctured disk, points in the upper
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half being covered twice and points in the lower half being covered once. Notice that each step
uses a function with zero-free derivative. The composition of all these functions is the indicated
function ℎ. Thus Exercise 9 is solved.

3 Infinite products and applications

If you know the zeroes of a polynomial (including multiplicity), then you know the polynomial
up to multiplication by a nonzero constant. Indeed, a polynomial whose zeroes are the points z1,
z2, . . . , zn can be written as c∏n

k=1(z − zk) for some complex number c.
If you think of an entire function as a polynomial of infinite degree, then you might expect

that knowing the zeroes of the function would essentially determine the function. The situation is
more complicated than for true polynomials, however, because the indeterminate nonzero scale
factor in general is a function, not a constant.

If f and g are two entire functions having the same zeroes with the same multiplicity, then the
quotient f∕g has only removable singularities and so can be viewed as a zero-free entire func-
tion. Since the complex plane is simply connected, a zero-free entire function has a holomorphic
logarithm. Thus f∕g can be written in the form eℎ for some entire function, and f = geℎ.

Accordingly, an entire function in principle is determined by its zeroes up to multiplication by
a zero-free factor eℎ. But how can the entire function be explicitly constructed from the zeroes? If
there are infinitely many zeroes (as is the case for the sine function, for example), then mimicking
the process for polynomials leads to infinite products. The immediate goal is to develop enough
theory about infinite products to make sense of formulas like the following one proved in §6 of
Chapter VII the textbook:

sin(�z) = �z
∞
∏

n=1

(

1 − z2

n2

)

(Euler’s product formula for the sine function).

3.1 Convergence of infinite products

What should it mean to say that an infinite product ∏∞
n=1 bn converges? Apparently, the natural

definition would be existence of the limit limN→∞
∏N

n=1 bn. That definition will not do, however,
because if b1 = 0, then the limit of partial products exists (and equals 0) for completely arbitrary
values of the other factors. But the existence of a limit ought not to depend on the value of the
first term (or on the values of finitely many terms).

One could insist on considering products having no factors equal to 0, but the application to
entire functions needs precisely the case in which some factors are equal to 0. On the other hand,
if there were infinitely many factors equal to 0, then the limit of partial products could only be 0,
and the limit would be independent of the values of the subsequence of nonzero terms.

Accordingly, the standard definition of convergence of infinite products requires that there be
only finitely many factors equal to 0 and that the limit of the partial products of the nonzero factors
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exists and that this limit is not equal to 0. If the limit of nonzero factors exists and equals 0, then
the product is said to diverge to 0.
One reason for excluding 0 as a limit is that one would like to pass back and forth between

infinite series and infinite products by using the exponential and logarithm functions. Another
reason is to preserve the property that a product is equal to zero if and only if some factor is equal
to zero.
Example. The infinite product ∏∞

n=1 1∕n diverges to 0. The corresponding series ∑∞
n=1 log(1∕n)(with the principal branch of the logarithm) diverges to −∞.

Example. The infinite product ∏∞
n=1

(

1 + 1
n

) diverges. Indeed, the partial product ∏k
n=1

(

1 + 1
n

)

telescopes to the value k + 1, which does not approach a finite value.
Example. The product∏∞

n=1

(

1 − 1
n2

) converges to 0 for the following reason.
Notice that 0 is an allowed value for the limit, but only if the nonzero factors converge to a

nonzero limit. In this example, the first term equals 0. Moreover,
k
∏

n=2

(

1 − 1
n2
)

=
k
∏

n=2

(n − 1)(n + 1)
n2

.

The product telescopes: each natural number appears twice in the numerator and twice in the
denominator, except for special terms at the beginning and the end. The product equals

1
2
⋅
k + 1
k

,

which has limit 1∕2 when k →∞. Therefore the original infinite product converges to 0.
For a product of nonzero terms bn to converge to a nonzero limit L, a necessary condition is

that bn → 1. Indeed, if a positive " less than |L| is specified, then convergence of the product
implies the existence of a natural numberN such that ||

|

L −
∏k

n=1 bn
|

|

|

< " when k ≥ N . Write pk
for∏k

n=1 bn. Then
1 − bk = 1 − pk∕pk−1 =

(pk−1 − L) − (pk − L)
(pk−1 − L) + L

,

so |1 − bk| < 2"∕(|L| − ") when k > N .
Accordingly, the general term of an infinite product usually is written in the form 1 + an. Anecessary condition for convergence of an infinite product is then that an → 0. What about

sufficient conditions?
Proposition. If no term (1 + an) equals 0, then the infinite product

∏∞
n=1(1 + an) and the infinite

series
∑∞

n=1 log(1 + an) (with the principal branch of the logarithm) either both converge or both
diverge.

Example. Consider the product∏∞
n=1

(

1 − z2

n2

).
If |z| ≤ R, say, then |z2∕n2| ≤ R2∕n2, and ∑∞

n=1R
2∕n2 converges. Therefore the series

∑∞
n=1 |z

2∕n2| converges uniformly for z in a compact set by the Weierstrass M-test. Use the
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observation that limw→0
log(1+w)

w
= 1 to deduce that the series ∑∞

n=1 log
(

1 − z2

n2

)

converges uni-
formly on compact sets. Therefore the original infinite product converges uniformly on compact
sets. (Exponentiation is a continuous operation, so if the partial sums of the series are close to a
limiting value, then the corresponding partial products obtained by exponentiating are closed to
the exponential of the limiting value.)

Notice that the discussion so far does not prove Euler’s product for the sine function. The
infinite product does converge, and multiplying by z gives an entire function having the same
zeroes as the sine function. Consequently, the two functions have a ratio that is a zero-free entire
function, hence of the form eg(z) for some entire function g. More work is needed to show that
g is the 0 function.
Proof of the Proposition. If the partial sums of the infinite series converge, then the exponentials
of the partial sums converge; hence the partial products converge (by continuity of the exponential
function). The converse argument is more delicate. If the partial products have a limit, then
so does the sequence of logarithms of partial products, but the logarithm of a product is not
necessarily equal to the sum of the logarithms for a fixed branch of the logarithm.

Suppose that the partial products do converge (to a nonzero limit). Since
log(1 + an) = log |1 + an| + i arg(1 + an),

what needs to be checked is that both ∑∞
n=1 log |1 + an| and

∑∞
n=1 arg(1 + an) converge. If the

partial products converge, then continuity of the modulus implies that the partial products of the
moduli converge, and to a positive real number. Continuity of the real logarithm function implies
that∑∞

n=1 log |1 + an| converges.
Nowwrite 1+an = |1+an| ei�n , where �n = arg(1+an). Since the partial products∏N

n=1(1+an)
and ∏N

n=1 |1 + an| both converge to nonzero limits, it follows that the partial products ∏N
n=1 e

i�n

converge, say to some ei'. Consequently, there is a sequence of integersmN such that'+2�mN−
∑N

n=1 �n → 0 asN → ∞. But an → 0 as n → ∞, so �n → 0, and the integer mN must eventually
stabilize at a constant value (since eventually mN and mN+1 differ by less than 1). Consequently,the series∑∞

n=1 �n converges to some value ' + 2�m.
A simple sufficient condition for convergence of an infinite product ∏∞

n=1(1 + an) is that theseries ∑∞
n=1 |an| converges. The intuitive idea is that log(1 + an) ≈ an when an is close to 0, sothe hypothesis implies absolute convergence of the series of logarithms, hence convergence of

the infinite product. Indeed, since the condition implies that an → 0, there is no loss of generality
in supposing that |an| < 1∕2, say. Now integrating the geometric series gives a series for the
logarithm:

log(1 + z) = z − 1
2
z2 + 1

3
z3 −⋯ when |z| < 1,

so | log(1 + z)| ≤ |z| + |z|2 + |z|3 +⋯ = |z|∕(1 − |z|). Hence | log(1 + an)| ≤ 2|an|.This simple sufficient condition for convergence of an infinite product is not necessary.
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Example. Consider∏∞
n=1

(

1 + (−1)n

n2∕3

).
Now log(1 + an) = an − 1

2
a2n +⋯, so

log
(

1 +
(−1)n

n2∕3

)

=
(−1)n

n2∕3
− 1
2
⋅
1
n4∕3

+⋯ =
(−1)n

n2∕3
+ O(1∕n4∕3).

The alternating series∑∞
n=1(−1)

n∕n2∕3 converges, and the remainder series converges absolutely.
Hence the infinite product converges (conditionally).

3.2 The Weierstrass factorization theorem for entire functions

Suppose {zn} is a discrete set of points in ℂ (no accumulation point), and {mn} is a sequence ofnatural numbers. The goal is to construct an entire function having a zero of order mn at zn forevery n.
The first try is an infinite product of the form∏∞

n=1(z − zn)
mn , but this attempt fails. Since the

factors do not tend to 1, the product diverges.
The second try is an infinite product of the form ∏∞

n=1

(

1 − z
zn

)mn . This attempt succeeds if zn
tends to infinity fast enough to make the product converge. This method handles, for instance,
the construction of a function with simple zeroes at the squares of the natural numbers, since
∑∞

n=1 z∕n
2 converges for every z (and converges uniformly on compact sets, so the limit function

is holomorphic). But the method fails to construct a function with a simple zero at each natural
number, since∑∞

n=1

(

1 − z
n

) diverges when z ≠ 0.
The third try, which succeeds, is to introduce nonvanishing convergence factors. For instance,

∞
∏

n=1

(

1 − z
n

)

exp
(z
n

)

does converge, uniformly on compact sets, since

log
(

1 − z
n

)

+ z
n
= −1

2
⋅
z2

n2
+⋯ = z2 ⋅ O(1∕n2).

Convergence factors were introduced by Weierstrass and caused a sensation at the time.
Theorem (Existence of an entire function with prescribed zeroes). Let {zn} be a sequence of
nonzero complex numbers, possibly with repetitions, but with no limit point. There exists an
entire function with zeroes precisely at the points of the sequence, the order of each zero being
equal to the multiplicity of the point in the sequence.

The following lemma is useful in establishing the general result.
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Lemma. If |z| ≤ 1∕2, then the principal branch of the logarithm satisfies the following estimates:

|z + log(1 − z)| ≤ |z|2,
|

|

|

|

|

(

z + z2

2

)

+ log(1 − z)
|

|

|

|

|

≤ |z|3,

|

|

|

|

|

(

z + z2

2
+ z3

3

)

+ log(1 − z)
|

|

|

|

|

≤ |z|4,

and so on. Also, log |1 − z| ≤ |z|.

Proof. By Taylor’s theorem,

log(1 − z) = −z − z2

2
− z3

3
−⋯ when |z| < 1.

Hence
|

|

|

|

k
∑

n=1

zn

n
+ log(1 − z)

|

|

|

|

=
|

|

|

|

∞
∑

n=k+1

zn

n
|

|

|

|

≤ 1
k + 1

∞
∑

n=k+1
|z|n = 1

k + 1
⋅
|z|k+1

1 − |z|
.

Now
1

k + 1
⋅

1
1 − |z|

≤ 2
k + 1

≤ 1 when |z| ≤ 1∕2 and k ≥ 1.

For the final statement in the lemma, observe that log |1 − z| ≤ log(1 + |z|) ≤ |z| by concavity
of the real logarithm function.
A corollary (not actually needed below) is that

|

|

|

1 − (1 − z)ez+
1
2 z
2+ 1

3 z
3+⋯+ 1

n z
n
|

|

|

≤ |z|n+1 when |z| ≤ 1 and n ≥ 1,
which is Lemma 5.11 in Chapter VII of the textbook (page 168). Indeed, the preceding consid-
erations show that the entire function inside the absolute value on the left-hand side is divisible
by zn+1. The derivative of the function is easily seen by explicit computation to have nonnegative
Maclaurin coefficients, so the function itself has nonnegative Maclaurin coefficients. Hence the
function divided by zn+1 has modulus that is maximized in the closed unit disk when z = 1, where
the value is equal to 1.
The expression

(1 − z) exp
(

z + z2

2
+ z3

3
+⋯ + zn

n

)

is known as a Weierstrass elementary factor, denoted En(z).
Construction of the convergent Weierstrass product. Behold:

∞
∏

n=1

(

1 − z
zn

)

exp

(

z
zn
+ 1
2

(

z
zn

)2

+⋯ + 1
n

(

z
zn

)n
)

.
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The claim is that this product converges uniformly on compact sets, in which case the limit is an
entire function that evidently has the required zeroes.

Indeed, |zn| → ∞ by hypothesis, so if z is confined to a compact set, then |z∕zn| is boundeduniformly by 1∕2 when n is sufficiently large. The lemma then implies that the logarithm of the
general term of the product has modulus bounded by 1∕2n+1. Since these bounds are the terms
of a convergent infinite series, the infinite product converges uniformly on compact sets by the
WeierstrassM-test.
Remark. The proof reveals that the sum in the exponent could be stopped at the term with power
n − 1 or n − 17 instead of the term with power n. This refinement is not especially interesting.
The interesting question is whether the sum in the exponent can be stopped at a power that is
independent of n. That question is answered by the Hadamard factorization theorem (covered in
Chapter XI).

To construct an entire function whose zero set includes the origin, simply multiply the infinite
product by a suitable power of z.
Theorem (Weierstrass factorization theorem for entire functions, 1876). Every entire function f (z)
can be expressed in the following form:

zkeg(z)
∞
∏

n=1

(

1 − z
zn

)

exp

(

z
zn
+ 1
2

(

z
zn

)2

+⋯ + 1
mn

(

z
zn

)mn
)

,

where k (possibly 0) is the order of the zero of f at the origin, g is some other entire function, the
sequence {zn} is the list of nonzero zeroes of f (repeated according to multiplicity), and {mn} is
a suitable sequence of natural numbers (it will do to take mn = n).

Proof. Dividing f (z) by a convergent infinite product with the same zeroes as f (of the same
orders) produces a zero-free entire function (after removing the removable singularities). Such a
function has a holomorphic logarithm, that is, can be written in the form exp g.
The representation in theWeierstrass factorization theorem is not unique, for the sequence {mn}can be replaced by an arbitrary sequence of larger numbers. Changing this sequence of natural

numbers will change the function g in the factorization. Moreover, the factorization changes if
the zeroes are reordered. A convenient normalization is to order the zeroes by increasing absolute
value, but the preceding proof does not depend on the order of the zeroes.
Corollary. Every function that is meromorphic in the whole plane can be written as the quotient
of two entire functions.

The corollary appeared as problem 9 on the August 2012 qualifying exam!
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3.3 Prescribed zeroes on general regions

The extension of Weierstrass’s theorem to proper subsets of the complex plane was accomplished
not by Weierstrass himself but by other researchers (Picard and Mittag-Leffler). Here is the state-
ment and a proof.
Theorem (Weierstrass theorem for general regions). SupposeG is an open subset of ℂ, and {zn}
is a sequence of points (possibly with repetitions) inG having no limit point insideG. Then there is
a holomorphic function onG having zeroes precisely at the points {zn} (with order corresponding
to the multiplicity of the point in the sequence).

Example. On an arbitrary open set G, there is a holomorphic function that cannot be analytically
continued across any boundary point whatsoever.

Indeed, take a sequence in G that has every boundary point as an accumulation point, and use
the theorem to construct a holomorphic function with zeroes at the points of the sequence. This
function cannot extend to a neighborhood of any boundary point, for the zeroes of the function
accumulate inside that neighborhood, which would contradict the identity principle.

To build the indicated sequence, take a dense sequence {an} in the boundary of G. Create a
new sequence {bn} that contains each ak infinitely often. For instance, the sequence a1, a1, a2,
a1, a2, a3, a1, a2, a3, a4, . . . will do. Then take zn to be a point in G at distance less than 1∕n from
the point bn.
Proof of the general Weierstrass theorem. The proof in the textbook is the standardmodern proof
that throws one point to infinity. Here instead is a perhaps more intuitive proof that works directly
on the original open set.

The first idea is to split the sequence of points into two parts, depending on whether the points
are close to the boundary of G or close to∞. Namely, view G as the union of the following two
disjoint sets:

S ∶= { z ∈ G ∶ |z| dist(z, )G) ≥ 1 } and T ∶= { z ∈ G ∶ |z| dist(z, )G) < 1 }.

Observe that S∩{zn}must be either a finite set or a sequence tending to∞. For in the contrary
case, there would be infinitely many of these points confined to a bounded set. The definition of S
implies that these points would be bounded away from )G. The Bolzano–Weierstrass theorem
then implies that these points would have a limit point inside G, contrary to hypothesis.

Consequently, the first version of theWeierstrass theorem implies that there is an entire function
with zeroes precisely at the points of the sequence that lie in S. That entire function certainly is
holomorphic on G.

All that remains is to construct a holomorphic function on G that has zeroes at the points of
the sequence lying in T . The product of this function with the entire function from the preceding
paragraph solves the problem.

Accordingly, let {an} denote the subsequence of points in the original sequence that happen tolie in T . If there are infinitelymany such terms of the sequence, then dist(an, )G)must approach 0.
If not, there would be a (further) subsequence bounded away from )G. The definition of T implies
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that the subsequence would be bounded, hence would have a limit point inside G, contrary to
hypothesis.

Now let bn be a point of )G such that |an−bn| = dist(an, )G). LetEn(z) denote the Weierstrass
elementary factor

(1 − z) exp
(

z + 1
2
z2 +⋯ + 1

n
zn
)

.

The claim is that the following product provides the required holomorphic function:
∞
∏

n=1
En

(

an − bn
z − bn

)

.

The argument of En takes the value 1 precisely when z = an, so the nth factor in the infinite
product vanishes precisely when z = an. The singularity of the argument is on the boundary
of G, so each factor is holomorphic inside G.

What remains to show is that the infinite product converges uniformly on compact subsets
of G. When z is confined to a compact set, then z necessarily is bounded away from )G, so the
denominator z − bn is bounded away from 0. On the other hand, an − bn → 0 by construction.
Consequently, |an − bn|∕|z − bn| < 1∕2 for sufficiently large n, so the infinite product converges
uniformly on compact sets.

4 Approximation

The basic version of Runge’s approximation theorem has already been stated and applied in § 2.4.
The theorem is due to the German mathematician Carl Runge (1856–1927), a student of Weier-
strass, in a paper in Acta Mathematica in 1885 (the same year that Weierstrass published his
approximation theorem for continuous functions). Runge is known also for the Runge–Kutta
method, a numerical method for finding approximate solutions of ordinary differential equations.
[The second name is another German mathematician, Martin Wilhelm Kutta (1867–1944).]
Theorem (Runge’s theorem for general compact sets). If K is a compact subset of ℂ, and the
function f is holomorphic on a neighborhood of K , then f is the uniform limit onK of a sequence
of rational functions with poles in the holes of K . Moreover, within each hole, the position of the
pole can be prescribed arbitrarily.

A hole in K means a bounded component of ℂ ⧵K . If K has no holes, then the approximation
is by holomorphic polynomials.

4.1 Sketch of the proof of Runge’s theorem

There are two main ideas in the proof: (i) approximate Cauchy’s integral formula using Riemann
sums and (ii) push the poles to new locations. Both ideas go back to Runge.
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Proof of step (i). Suppose that f is holomorphic in a neighborhood of a compact setK . The first
step is to produce a cycle  (a union of finitely many oriented simple closed curves) contained in
the open set where f is holomorphic and having winding number 1 around each point of K . The
precise meaning of the winding number of  around z is

1
2�i ∫

1
w − z

dw.

If the compact set K has a simple structure (a closed Jordan region, for example), then the
existence of  is evident: draw a curve just outside the boundary of K . But if K is a complicated
set—perhaps a fractal set or a set having infinitely many components—then some work is needed
to demonstrate the existence of  convincingly.
Suppose for the moment that  has been constructed. By Cauchy’s integral formula,

f (z) = 1
2�i ∫

f (w)
w − z

dw when z ∈ K .

Since f is uniformly continuous on  (which is a compact set), and w − z is bounded away
from 0 when z ∈ K and w ∈  , the integral can be approximated uniformly for such z and w
by Riemann sums. These sums are linear combinations of rational functions of z with first-order
poles at certain points of  (the partition points). Thus f is approximated uniformly on K by
rational functions with poles off K .

(The error in approximation by a Riemann sum depends on the modulus of continuity of the
function. Evidently the dependence on z is uniform when z has distance from  bounded away
from zero.)

The construction of  can be carried out in the following way. Cover the plane by a honeycomb
mesh of regular hexagons having diameter less than the distance from K to the boundary of the
open set where the function f is holomorphic. Collect all the hexagonal cells whose closures
intersect K , and orient the boundaries counterclockwise. The claim is that  can be taken to
consist of a subset of the oriented edges of these hexagons: namely, those edges that do not
intersect K .
Observe that if z is a point ofK not on any of the gridlines, then the sum of the Cauchy integrals

of f over the boundaries of all the closed hexagons that intersect K equals f (z), for z is inside
exactly one of these hexagons. If an edge of a hexagon intersects K , then there is an adjacent
hexagon containing the same edge with opposite orientation. Cancelling the integrals over such
edges shows that f (z) equals the Cauchy integral of f over  when z is not on a gridline. By
continuity, the integral still equals f (z) even when z is on a gridline.

Why is  a union of simple closed curves? Observe that at the terminal point of an arbitrary
oriented edge of  , there is a unique adjacent edge of  . (This property is the reason that hexagons
are more convenient than squares.) Only finitely many hexagons intersect the compact set K , so
starting with an arbitrary edge of  and following successor edges eventually leads back to the
starting point, generating a closed curve. If the edges of  have not been used up, then start over
with a new edge and generate another closed curve. The process terminates after a finite number
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of steps. (Actually, the information that  is a union of closed curves is not really needed in
the proof. Viewed merely as a union of edges, the arc  still gives an integral representing the
function, and that integral can be approximated by Riemann sums.)
Proof of pole pushing. The idea behind pole pushing is shown by the following calculation, in
which z0 and z1 are two arbitrary distinct complex numbers:

1
z − z0

= 1
(z − z1) − (z0 − z1)

= 1
z − z1

⋅
1

1 −
z0 − z1
z − z1

= 1
z − z1

∞
∑

n=0

(

z0 − z1
z − z1

)n

,

with convergence when |z0 − z1| < |z− z1|. Taking partial sums of the infinite series shows that
the rational function 1∕(z − z0) can be approximated by rational functions with pole at z1 when
z is farther away from z1 than z0 is. The convergence is even uniform on sets whose distance
from z1 is strictly greater than the distance from z1 to z0.In particular, if z0 is in a hole of the compact setK , then a rational function with pole at z0 canbe approximated uniformly on K by rational functions with pole at an arbitrary point of the hole
at slightly less than half the distance of z0 toK . Iterating this observation shows that the pole can
be pushed to an arbitrary location inside the hole.

What if z0 is in the unbounded component of the complement of K? By the preceding reason-
ing, the pole can be pushed to an arbitrary location in the unbounded component. Suppose the
pole has been pushed to a point z1 outside a disk so large that the disk contains the compact setK .
The Taylor series of 1∕(z − z1) about the center of the disk converges uniformly on K , and the
partial sums of this series are polynomials. In other words, the pole in the unbounded component
of the complement of K can be pushed to infinity.

4.2 Mergelyan’s theorems

The hypothesis in Runge’s theorem is somewhat unnatural: athough the approximation takes
place only on the compact set, the function being approximated is assumed to be holomorphic
in a neighborhood of the set. The following significant improvement of Runge’s theorem is due
to the Armenian mathematician Sergey Nikitovich Mergelyan (1928–2008). The main idea in
the proof (not presented here) is to extend the function in a smooth way to a neighborhood of
the compact set and to correct the extended function by solving a )-problem (that is, solving
the inhomogeneous Cauchy–Riemann equations). Then use Runge’s theorem to approximate
the extended function. The difficulty—which Mergelyan overcame—is to control the size of the
correction term.
Theorem (Mergelyan’s theorems, 1951–1952). 1. If K is a compact set with no holes, and

f is a continuous function on K that is holomorphic on the interior of K , then there is a
sequence {pn} of polynomials such that maxz∈K |

|

f (z) − pn(z)|| → 0.
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2. If K is a compact set with finitely many holes, and f is a continuous function on K that
is holomorphic on the interior of K , then f is the uniform limit on K of a sequence of
rational functions with poles in the holes.

3. More generally, the conclusion holds in the case of infinitely many holes if the diameters of
the holes are bounded away from zero.

Here is an example of a compact set to which the third case applies:

{ iy ∶ |y| ≤ 1 } ∪
∞
⋃

n=1
{ n−1 + iy ∶ |y| ≤ 1 } ∪ { x + i ∶ |x| ≤ 1 } ∪ { x − i ∶ |x| ≤ 1 }.

Each of the infinitely many holes has diameter greater than 2.
A counterexample with infinitely many shrinking holes was found by the Swiss mathematician

Alice Roth (1905–1977) in her 1938 dissertation (prior to Mergelyan’s work). The example is
built by removing a suitable sequence of open disks from the closed unit disk, leaving a compact
set with empty interior. Such a set is now called a “Swiss cheese” (which is the generic name in
English for a pale-yellow cheese having many holes).

The case of infinitely many holes was definitively settled in 1966 by the famous blind Russian
mathematician A. G. Vitushkin (1931–2004). He found a necessary and sufficient condition on
the compact set (in terms of a notion called capacity) for rational approximation to hold.

4.3 Mittag-Leffler’s theorem

Magnus Gustaf (Gösta) Mittag-Leffler (1846–1927), founder of Acta Mathematica (1882) and
namesake of the Mittag-Leffler Institute in the suburbs of Stockholm, was a Swedish mathemati-
cian who attended some of Weierstrass’s lectures and subsequently generalized the theorem of
Weierstrass about constructing functions with prescribed zeroes. (Leffler was the father’s name,
andMittagwas themother’s name; Mittag-Leffler joined the names himself as an adult, apparently
because of his interest in women’s rights. His influence made it possible for Sonya Kovalevsky
[1850–1891] to be appointed professor of mathematics in Stockholm.)

The theorem ofWeierstrass says that there exists an entire function with prescribed zeroes (sub-
ject to the zeroes not accumulating). A consequence is the existence of meromorphic functions
with prescribed poles (just take the reciprocal of a function with prescribed zeroes). Mittag-
Leffler’s main contribution was to construct functions not just with prescribed poles but with
prescribed singular parts (also known as principal parts). Here is one version of the theorem.
Theorem (Mittag-Leffler’s theorem, 1876–1884). Suppose G is an open subset of ℂ and E is
a discrete subset of G. Suppose given, for each point b in E, a holomorphic function pb on a
punctured neighborhood of b. Then there exists a holomorphic function f on G ⧵E such that for
each point b in E, the function f − pb has a removable singularity at b.

In the statement of the theorem, a discrete set means a set that has no accumulation point in G.
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A typical case is that pb is a finite linear combination of powers of 1∕(z − b). The theorem
guarantees that there exists a function with prescribed poles and prescribed principal parts at the
singularities. In other words, there exists a meromorphic function with prescribed principal parts.

The theorem is more general, allowing essential singularities to be prescribed. For instance,
the theorem produces a meromorphic function in the plane sharing the whole singular part of
sin

( 1
z − k

)

at each integer k.
Proof. The standard modern proof uses Runge’s theorem, although Runge’s work actually was
motivated by Mittag-Leffler’s.

The first step is to exhaustG by a sequence {Kn} of compact sets such that each set is contained
in the interior of the next, and no Kn has unnecessary holes. In other words, each hole in the
compact set contains a hole in G. This construction was done in § 2.2.

Each function pb has a Laurent series that converges in a punctured neighborhood of b. The
part of the series involving powers of (z − b) with nonnegative exponents is a Taylor series that
converges in some disk centered at b. The part of the series involving powers of (z − b) with
negative exponents converges in ℂ ⧵ {b}. Since the conclusion of the theorem addresses only the
second part of the Laurent series, there is no loss of generality in replacing each pb by the singularpart. In other words, there is no loss of generality in supposing that each pb is holomorphic on
ℂ ⧵ {b}.

The main idea in the proof of the theorem is to build the function as an infinite series. The first
try is simply to add together all the functions pb as b runs over the countable set E. This method
certainly works when the set E is finite. In general, there will be an infinite series, and this series
need not converge. The idea is to add convergence factors that are holomorphic on all of G and
hence do not affect the singular parts.

To implement this idea, observe first that there are only finitely many singular points inside the
compact set K1. Add the corresponding functions pb together and call that sum f1. In general,
let fn denote the sum of the functions pb for b in the set Kn ⧵ Kn−1. Notice that when n > 1,
the function fn is holomorphic on Kn−1. Use Runge’s theorem to find a rational function gn withpoles in ℂ ⧵ G such that |

|

fn(z) − gn(z)|| < 1∕2n when z ∈ Kn−1.The required function is f1+∑∞
n=2(fn−gn). Indeed, if a compact setK is fixed, then the terms

in the tail of the series eventually are holomorphic on K , and the tail of the series converges
uniformly on K by comparison with a convergent geometric series. Hence the series represents
a holomorphic function on G ⧵ E. Moreover, at a particular point b in E, all the terms of the
sum are holomorphic in a neighborhood of b except for one term, which by construction has the
required singular part.

5 Hadamard’s factorization theorem

The structure of the Weierstrass factorization of an entire function can be made more precise if
some information is known about the growth of the function. But the question of rate of growth
is more complicated for entire functions than for polynomials.
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On a circle of large radius r, the absolute value of a polynomial of degree n is comparable to rn,
uniformly with respect to the angle. An entire function, however, can have different growth rates
in different directions. For example, the exponential function ez grows fast on the positive part of
the real axis but decays to 0 on the negative part of the real axis. The simplest way to describe the
growth of an entire function is to quantify the maximal rate of growth (independent of the angle).

5.1 Order

The order of an entire function f is the greatest lower bound of the positive values of t for which
f (z) exp(−|z|t) is a bounded function of z in the plane. For example, the order of zez is 1: the
expression zeze−|z| is unbounded on the positive part of the real axis, but the expression zeze−|z|1+"
is bounded for every positive ". (This example shows that the infimum in the definition of order
need not be attained.)

For an arbitrary positive ", every constant times |z|t grows slower than |z|t+" when |z| → ∞,
so an equivalent way to describe the order is the infimum of positive values of t for which there
exist constants c1 and c2 such that |f (z)| ≤ c1 exp(c2|z|t) for every z. Only the growth rate is
significant, so another equivalent description of the order is the infimum of positive values of t
for which |f (z)| < exp(|z|t) when |z| is sufficiently large.
Exercise. (A version of this exercise is posted, with hints; due March 24, 2016.) WriteM(r) for
the maximum of |f (z)| when |z| ≤ r. The following are equivalent definitions of the order of the
entire function f . (Exclude the identically zero function, an uninteresting special case.)

• inf
{

t ∈ ℝ ∶ |f (z)| exp(−|z|t) is a bounded function of z in ℂ
}.

• inf{ t ∈ ℝ ∶ lim
r→∞

r−t logM(r) = 0 }.
• lim sup

r→∞

log logM(r)
log r

.

• lim sup
n→∞

n log n
log 1

|cn|

, where
∞
∑

n=0
cnz

n is the Maclaurin series of f (z).

Example. If f is a constant function, then the order of f equals 0. More generally, the order of
every polynomial is 0. Indeed, a polynomial of degree n grows like a constant times |z|n, which
is a slower growth rate than exp(|z|") for an arbitrary positive ".
Example. If g is a polynomial of degree k, then the order of eg is k. Indeed, logM(r) equals the
maximum of Re g(z) when |z| = r. On a circle of large radius r, the function g is essentially a
power function wrapping the circle k times around an image curve that is nearly a circle of radius
comparable to rk, so the maximum of Re g(z) is comparable to rk.
Example. The function eez is an entire function of infinite order. Indeed, logM(r) = er, so there
is no power t such that r−t logM(r) tends to 0 when r tends to infinity.
Lemma (Generalization of Liouville’s theorem). If an entire function grows no faster than a
polynomial, then the entire function is a polynomial. More precisely, if f is entire, and there
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exist nonnegative constants A, B, and C such that |f (z)| ≤ A + B|z|C for every z, then f is a
polynomial, and the degree is no larger than C .

Proof. (The statement is essentially Exercise 1 in §3 of Chapter IV in the textbook.) Let k be the
unique integer such that k ≤ C < k + 1, let R be a large radius, and let z be an arbitrary point in
the unit disk. Cauchy’s formula for derivatives implies that

|f (k+1)(z)| =
|

|

|

|

(k + 1)!
2�i ∫

|w|=R

f (w)
(w − z)k+2

dw
|

|

|

|

≤ (k + 1)!
2� ∫

2�

0

A + BRC

(R − 1)k+2
Rd�

=
(k + 1)!R(A + BRC)

(R − 1)k+2
.

Letting R go to infinity shows that f (k+1) is identically equal to 0 in the unit disk, hence in the
whole plane. Therefore f is a polynomial of degree at most k.
Remark. The hypothesis can be weakened. The proof needs the growth bound on f not for every
radius R but merely for a sequence of values of R tending to infinity. This improvement of the
lemma will be used in § 5.7.
Example. There exist nonpolynomial entire functions of order 0. One example is the infinite
product

∞
∏

n=1

(

1 − z
n!

)

from the midterm examination.
To see why this function has order 0, fix a positive ", and letC" denote the sum of the convergent

infinite series∑∞
n=1 n

1∕"∕n! (either the root test or the ratio test establishes the convergence). When
|z| = r, an upper bound for the absolute value of the infinite product is

∏

1≤n≤r"

(

1 + r
n!

)

∏

n>r"

(

1 + r
n!

)

.

The first factor is bounded above by (1 + r)r" . The following chain of inequalities shows that the
second factor is bounded:

∏

n>r"

(

1 + r
n!

)

<
∏

n>r"
exp r

n!
<
∏

n>r"
exp n

1∕"

n!
< exp

∞
∑

n=1

n1∕"

n!
= expC".

Therefore
r−2" logM(r) ≤ C"r

−2" + r−" log(1 + r),

and the right-hand side tends to 0 when r goes to infinity. Since " is an arbitrary positive number,
the order of the entire function is 0.
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Example. The expression cos√z apparently does not define an entire function, for √z is not
analytic in a neighborhood of the origin. But the cosine is an even function, so the Maclaurin
series involves only even powers, and halving each power produces an entire function that can
reasonably be called cos√z. This function has order 1∕2. Thus the order need not be a natural
number. (The exercise above, which relates the order to the Maclaurin coefficients, reveals that
there exist entire functions whose order is any prescribed nonnegative real number.)
Remark. The function cos√z has zeroes roughly at the squares of integers and grows roughly
like e|z|1∕2 . The function cos z has zeroes roughly at the integers and grows roughly like e|z|.
Thus a greater concentration of zeroes corresponds to a larger rate of growth. This observation
is a general property. Although paradoxical at first sight, the property corresponds with your
knowledge that a polynomial having a lot of zeroes has high degree and hence grows fast.

5.2 Statement of the theorem

Theorem (Hadamard’s factorization theorem). If f is an entire function (not identically zero) of
order �, then f (z) can be expressed in the form

zmeg(z)
∞
∏

n=1

(

1 − z
zn

)

exp

(

z
zn
+ 1
2

(

z
zn

)2

+⋯ + 1
k

(

z
zn

)k
)

,

wherem is the order of the zero of f at the origin (possiblym = 0), the function g is a polynomial
of degree no larger than �, the natural number k is no larger than � (if k = 0, then the exponential
factor is absent), and the numbers zn are the zeroes of f at points other than the origin, repeated
according to multiplicity. If f has only finitely many zeroes, then the factorization reduces to a
polynomial times eg(z).

Example. Show that the function z + ez has infinitely many zeroes.
Solution. If not, then there is a polynomial p(z) and a constant b such that z+ ez = p(z)ebz (since
z + ez has order 1). Then

ze−z + 1 = p(z)e(b−1)z.

When z→ ∞ along the positive real axis, the left-hand side approaches the limit 1. The only way
the right-hand side can have limit equal to 1 is for b to equal 1 and p to be the constant polyno-
mial 1. But then ze−z on the left-hand side must be identically 0, which is absurd. Accordingly,
the expression z + ez must have infinitely many zeroes, so that p(z) is replaced by an infinite
product.
Example. An entire function of finite, non-integer order takes every complex value infinitely
often. (In other words, there is no Picard exceptional value.) This statement is Corollary 3.8 in
Chapter XI of the textbook.
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Proof. Seeking a contradiction, suppose that such a function f takes the value c only a finite
number of times. Hadamard’s theorem implies that f (z) − c can be written as a polynomial p(z)
times eg(z) for some polynomial g. But the order of c + p(z)eg(z) evidently is an integer.

The preceding examples illustrate the power of Hadamard’s factorization theorem. The proof
requires some preparation. Before diving into the proof, seeing the classical statement of the
theorem is useful.

5.3 Genus

Suppose {zn}∞n=1 is the sequence of nonzero zeroes of an entire function f (not identically zero),
where multiple zeroes are repeated in the sequence according to multiplicity. Estimates on the
Maclaurin series of log(1 − z) from § 3.2 imply that if∑∞

n=1 1∕|zn|
k+1 <∞, then∏∞

n=1Ek(z∕zn)
converges, where Ek(w) = (1 − w) exp(w + 1

2
w2 + ⋯ + 1

k
wk) if k is a positive integer, and

E0(w) = 1 − w. If there exists some such nonnegative integer k, then there is a smallest one,
called the rank of f (or the rank of the sequence {zn} of zeroes).If f has finite rank k, then dividing f (z) by the convergent infinite product ∏∞

n=1Ek(z∕zn)yields an entire function whose only possible zero is at the origin. Further dividing by a suitable
power zm gives a zero-free entire function, and such a function can be written in the form eg for
some other entire function g. If g is a polynomial, then the genus of f is the maximum of the
rank of f and the degree of g. Notice that the genus is necessarily an integer, in contrast to the
order.
Theorem (Classical statement of Hadamard’s theorem). The order � of an entire function is finite
if and only if the genus � is finite, and

� ≤ � ≤ � + 1.

Proof of the right-hand inequality. The order of a product of two entire functions does not exceed
the maximum of the orders of the two factors. Indeed, if |f1(z)| < exp(|z|�1+") when |z| is
sufficiently large, and |f2(z)| < exp(|z|�2+") when |z| is sufficiently large, then |f1(z)f2(z)| <
exp(2|z|max(�1,�2)+") < exp(|z|max(�1,�2)+2") when |z| is sufficiently large.

Therefore the factor zmeg(z) and the infinite product∏∞
n=1Ek(z∕zn) can be discussed separately.If g is a polynomial of degree k, then the order of eg is k. But zm has order 0, so the product zmeg(z)

has order not exceeding k (in fact, equal to k). What remains is to show that an infinite product
∏∞

n=1Ek(z∕zn) of rank k has order no larger than k + 1. That conclusion is part of the followingmore precise lemma.
Define the cutoff convergence exponent � of a sequence {zn}∞n=1 of nonzero complex numbers

to be the infimum of real values of t for which∑∞
n=1 1∕|zn|

t converges. If � is not an integer, then
the rank k is the unique integer such that k < � < k + 1. If � is an integer, then the rank k has
the property that k ≤ � ≤ k+ 1. Equality holds in the left-hand inequality when the cutoff is not
attained, and equality holds in the right-hand inequality when the cutoff is attained.
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Lemma. The cutoff convergence exponent of a sequence {zn}∞n=1 of rank k is equal to the order
of the infinite product

∏∞
n=1Ek(z∕zn).

The lemma implies that the double inequality in Hadamard’s theorem cannot be improved:
equality can occur on either side. Indeed, the function exp(zk) has genus k and order k; the
convergent infinite product

∞
∏

n=2

(

1 − z
n(log n)2

)

has rank 0 (also genus 0, since there is no factor eg) and order 1, since the cutoff convergence
exponent of 1 is attained.

The immediately relevant part of the lemma—that the order of the infinite product is less than
or equal to the cutoff convergence exponent—can be proved now. On the other hand, establishing
the lower bound for the order requires a tool to be developed in the next section.
Proof of half the lemma. If the cutoff convergence exponent � is strictly less than k + 1, then let
" be an arbitrary positive number such that � + " ≤ k + 1. If � = k + 1, then let " be 0. In either
case, the series∑∞

n=1 1∕|zn|
�+" converges by hypothesis. The goal is to bound the absolute value

of the infinite product∏∞
n=1Ek(z∕zn) from above by the exponential of a constant times |z|�+".

First suppose that k ≥ 1. When |w| ≤ 1∕2, the lemma in § 3.2 implies that |Ek(w)| ≤
exp(|w|k+1) ≤ exp(|w|�+"). If |w| > 1∕2, then

|

|

|

|

w + 1
2
w2 +⋯ + 1

k
wk|

|

|

|

≤
(

2k−1 + 2k−2 +⋯ + 1
)

|w|k < 2k|w|k.

Therefore
exp(−2k|w|k) <

|

|

|

|

exp
(

w + 1
2
w2 +⋯ + 1

k
wk

)

|

|

|

|

< exp(2k|w|k) when |w| > 1∕2.

The right-hand side of this double inequality is of interest now, and the left-hand side will be
invoked in § 5.7. The assumptions that |w| > 1∕2 and k ≥ 1 additionally imply that

|1 −w| ≤ 1 + |w| < exp(|w|) ≤ exp(2k−1|w|k);

but 2k + 2k−1 < 2k+1, so |Ek(w)| < exp(2k+1|w|k) < exp(2�+"+1|w|�+") when |w| > 1∕2. In
summary, if k ≥ 1, then the absolute value of Ek(w) is bounded above by the exponential of a
constant times |w|�+" for every w, whether |w| ≤ 1∕2 or |w| > 1∕2.

If k = 0, then Ek(w) reduces to 1 −w. If |w| ≤ 1, then
|1 −w| ≤ 1 + |w| ≤ exp(|w|) ≤ exp(|w|�+").

LetN be the least integer greater than or equal to 1∕(� + "). If |w| > 1, then

exp(N|w|�+") = 1 +
∞
∑

n=1

(N|w|�+")n

n!
> 1 +

(N|w|�+")N

N!
> 1 + |w| ≥ |E0(w)|.
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Therefore |E0(w)| ≤ exp(N|w|�+") for every w, whether |w| ≤ 1 or |w| > 1.
The two preceding paragraphs show that whatever the value of the rank, there is a positive

number c depending only on � + " (the maximum of 2�+"+1 and ⌈1∕(� + ")⌉ will do) such that
|Ek(w)| ≤ exp(c|w|�+") for every w. Accordingly,

|

|

|

|

∞
∏

n=1
Ek(z∕zn)

|

|

|

|

≤ exp
(

c|z|�+"
∞
∑

n=1

1
|zn|�+"

)

.

By hypothesis, the series∑∞
n=1 1∕|zn|

�+" converges. Thus the absolute value of the infinite product
is bounded above by the exponential of a constant times |z|�+", so the order � does not exceed
� + ". Letting " go to 0 shows that the order of the infinite product is no larger than the cutoff
convergence exponent �.

The other half of the lemma, that the order of the infinite product is no smaller than the cutoff
convergence exponent �, follows from Jensen’s formula, the next topic.

5.4 Jensen’s formula

The harder half of Hadamard’s theorem is the statement that the genus is no larger than the order.
The key tool needed in the proof is a quantitative estimate showing that the growth rate of an
entire function controls the number of zeroes of the function in large disks.
Theorem (Jensen’s formula). Suppose f is holomorphic in a neighborhood of the closed disk
B(0; r), and let z1, . . . , zn be the zeroes of f in the open diskB(0; r), each zero repeated according
to its multiplicity. If f (0) ≠ 0, then

log |f (0)| +
n
∑

k=1
log r

|zk|
= 1
2� ∫

2�

0
log |f (rei�)| d�.

The theorem is due to the Danish mathematician Johan Jensen (1859–1925). Actually his
profession was telephone engineer, a job that he took to support himself while he pursued his
love of mathematics. Thus he was an amateur mathematician. He found his formula while trying
unsuccessfully to prove the Riemann hypothesis. He is known in real analysis and probability for
Jensen’s inequality (about convex functions).

You can easily adjust the formula in case f (0) = 0. If f has a zero of order m at the origin,
then apply the formula to f (z)∕zm. See Exercise 1 in §1 of Chapter XI. The following statement
is essentially Exercise 2 in the same section.
Corollary. If f is entire, normalized such that f (0) = 1, and n(r) denotes the number of zeroes
of f in B(0; r), counted according to multiplicity, then n(r) log(1+ c) ≤ logM((1+ c)r) for each
positive c and each positive radius r. In particular, taking c equal to 2 shows that n(r) < M(3r).
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Again, the condition that f (0) = 1 is merely a convenient normalization. If f (0) is an arbitrary
nonzero value, then apply the result to f (z)∕f (0). If f has a zero of order m at the origin, then
apply the result to f (z)∕zm. The details of the formula change, but the essence remains: namely,
control on the modulus of the entire function on a disk gives control on the number of zeroes in
a smaller disk.
Example. If f (z) = cos(z), thenM(3r) = 1

2
(e3r + e−3r), so logM(3r) ≈ 3r. On the other hand,

n(r) ≈ 2r∕�. This example shows that the corollary is sensible, and the inequality cannot be
improved by much.
Proof of Corollary. Jensen’s formula [with r replaced by (1 + c)r] implies that

logM((1 + c)r) ≥ 1
2� ∫

2�

0
log |f ((1 + c)rei�)| d� =

∑

|zk|<(1+c)r
log

(1 + c)r
|zk|

≥
∑

|zk|≤r
log

(1 + c)r
|zk|

≥ n(r) log(1 + c).

Proof of Jensen’s formula. The proof will be built up through a sequence of steps. If f has no
zeroes on the closed disk, then there is a holomorphic branch of log f , and the formula is simply
the real part of the mean-value property of log f .
Next suppose that f has some zeroes inside the disk B(0; r) but none on the boundary. The

zeroes inside the disk can be canceled bymultiplying by a suitable linear fractional transformation
(a Blaschke product) that has modulus equal to 1 on the boundary of B(0; r). Namely, if |zk| < r,then |zk∕r| < 1, so the Möbius transformation

zk
r
− z

r

1 − zk
r
z
r

or r(zk − z)
r2 − zkz

has a zero when z = zk and has modulus 1 when z is on the boundary of B(0; r). Set F (z) equal
to

f (z)
/ n

∏

k=1

r(zk − z)
r2 − zkz

.

Then |F (z)| = |f (z)| when |z| = r, and the singularities of F are removable, so applying the
preceding case shows that

1
2� ∫

2�

0
log |f (rei�)| d� = 1

2� ∫

2�

0
log |F (rei�)| d� = log |F (0)|

= log |f (0)| −
n
∑

k=1
log

|zk|
r
,

as required.
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Finally, suppose that some of the zeroes of f lie on the boundary of B(0; r). This case is not
needed in applications, since making a small perturbation of the radius reduces to the preceding
case, but pinning down the general case is interesting for completeness. Notice that if a is a
zero on the boundary, then log(|a|∕r) = 0. Seemingly, the result should follow from a suitable
convergence theorem for integrals as the radius approaches r. But the situation does not fit any
of the standard convergence theorems!

Here is a different argument. To get started, suppose there is just one zero on the boundary,
say at a. The preceding proof applies to f (z)∕(z − a). Consequently, what needs to be shown to
verify the validity of Jensen’s formula when a zero lies on the boundary is that

1
2� ∫

2�

0
log |rei� − a| d� = log |a|,

or, equivalently,
1
2� ∫

2�

0
log |1 − (r∕a)ei�| d� = 0.

Now r∕a is a complex number of modulus equal to 1, so adding a constant to the integration
variable and using periodicity of the exponential function reduces the problem to showing that

∫

2�

0
log |1 − ei�| d� = 0.

An equivalent formulation of this statement is that

Re∫
|z|=1

log(1 − z) dz
iz
= 0.

Replacing the integration path by one that avoids the singularity at 1 by bumping inward with
a small semi-circle of radius � makes an error of order � log �, which tends to 0 with �. But
Cauchy’s integral formula applies on the bumped contour and evaluates the integral as 2� log 1,
or 0. Multiple zeroes on the boundary can be handled the same way.

5.5 Application of Jensen’s formula to the rank

Proof that the rank does not exceed the order. Suppose the entire function f has finite order �.
There is no loss of generality in supposing that f (0) = 1, for dividing f by a constant or even by
a constant times a power of z changes neither the order of the entire function nor the rank. Let
{zn}∞n=1 be the sequence of zeroes of f (repeated according to multiplicity) arranged in order of
increasing (or nondecreasing) modulus.

The plan is to show that the cutoff convergence exponent for the sequence {zn} is no larger thanthe order �. That conclusion completes the proof of the lemma from § 5.3 and simultaneously
shows that the rank does not exceed the order.
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Suppose that � is an arbitrary real number strictly larger than �, and fix a positive number �
such that � + 2� < �. The corollary to Jensen’s formula implies that

j ≤ n(|zj|) < logM(3|zj|).

Since |zj| → ∞ when j → ∞, the definition of order implies that if j is sufficiently large, then
logM(3|zj|) < (3|zj|)�+� . If additionally j is so large that 3�+� < |zj|� , then

logM(3|zj|) < |zj|
�+2� .

The two preceding inequalities imply that j < |zj|�+2� when j is sufficiently large, so

1
|zj|

<
(

1
j

)1∕(�+2�)

, and 1
|zj|�

<
(

1
j

)�∕(�+2�)

.

Since � + 2� < �, the series∑
j

1
|zj|�

converges by the comparison test.
Thus the cutoff convergence exponent � is less than or equal to �. But � is an arbitrary number

larger than �, so � ≤ �. If k is the rank, then the series∑
j

1
|zj|k

diverges, so k ≤ �.

The remaining part of Hadamard’s factorization theorem is that if an exponential factor eg is
present, then g is a polynomial, and the degree of g does not exceed the order of the entire function.
One way to get this conclusion is to apply the so-called Poisson–Jensen formula (see §1.3 in
Chapter XI of the textbook), which is obtained by composing Jensen’s formula with a linear
fractional transformation. The following proof, different from the one in the textbook, is based
on another famous and useful inequality.

5.6 Carathéodory’s inequality

If you control the size of the real part of a holomorphic function, do you control the size of the
function? Evidently not, for adding 100i to the function does not affect the real part. A way to
avoid this problem is to ask additionally for control on the whole function at one point. Another
difficulty is illustrated by the holomorphic function −i log(1 − z) on the open unit disk: the real
part is arg(1 − z), which is bounded, but the imaginary part is ln(1∕|1 − z|), which is unbounded
near the boundary point 1. A way to avoid this problem is to stay away from the boundary of the
domain.

Carathéodory’s inequality (which is Exercise 4 in §2 of Chapter VI in the textbook) can be
interpreted as saying that the two indicated problems are the only ones that can arise. One version
of the inequality (a little stronger than the statement in the textbook) says that if f is holomorphic
on a disk B(0;R), and the real part of f is bounded above by A, and 0 < r < R, then

M(r) ≤ 2r
R − r

A + R + r
R − r

|f (0)|,
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whereM(r) is the maximum of |f (z)| for z in the closed disk B(0, r). Notice that the number A
is allowed to be negative, being an upper bound for the real part (not for the absolute value of the
real part).
Proof. First consider the case that f (0) = 0. By hypothesis, the function f maps into the half-
plane { z ∈ ℂ ∶ Re z ≤ A }, and A ≥ 0. Suppose, without loss of generality, that f is not
constant (for the inequality is trivial for constant functions). By the open mapping theorem, the
image of f must lie in the open half-plane, and the number A must be strictly positive.

Let '(w) denote w∕(2A −w). This linear fractional transformation takes A to 1 and∞ to −1
and 0 to 0, so 'maps the indicated half-plane to the unit disk. The composite function '◦f then
maps the disk of radius R to the unit disk, fixing the origin. The Schwarz lemma, adjusted to a
disk of radius R, implies that |'◦f (z)| ≤ |z|∕R for every z in the disk of radius R. The required
inequality for f follows by observing that f = '−1◦('◦f ), and '−1(w) = 2Aw∕(1 +w), so

f (z) = 2A
'◦f (z)

1 + '◦f (z)
, whence M(r) ≤ 2A

r∕R
1 − (r∕R)

= 2r
R − r

A.

To obtain the general case, when f (0) is not necessarily equal to 0, apply the special case to
the function f (z) − f (0). Then the number A changes to A − Re f (0), and

|f (z) − f (0)| ≤ 2r
R − r

(A − Re f (0)) when |z| ≤ r.

Hence
M(r) ≤ |f (0)| + 2r

R − r
A + 2r

R − r
|f (0)| = 2r

R − r
A + R + r

R − r
|f (0)|,

as claimed.
A consequence of Carathéodory’s inequality is that if the real part of an entire function grows

no faster than a polynomial, then the entire function is a polynomial. This statement generalizes
the lemma from § 5.1, itself a generalization of Liouville’s theorem. Here is a precise formulation.
Lemma. If f is entire, and there exist nonnegative constants A, B, and C such that Re f (z) ≤
A + B|z|C for every z, then f is a polynomial, and the degree is no larger than C .

Proof. Applying Carathéodory’s inequality with R equal to 2r shows that
M(r) ≤ 2(A + B(2r)C) + 3|f (0)|.

Thus |f (z)| inherits a growth estimate of the same form as the estimate satisfied by Re f (z), but
with different constants. The conclusion now follows from the lemma in § 5.1.
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5.7 Conclusion of the proof of Hadamard’s factorization theorem

Suppose f has order � and rank k, and

f (z) = zmeg(z)
∞
∏

n=1

(

1 − z
zn

)

exp

(

z
zn
+⋯ + 1

k

(

z
zn

)k
)

.

What remains to show is that g must be a polynomial, moreover a polynomial of degree at most �.
The problem is how to leverage the growth estimate on f to obtain information about g. The

proof in the textbook takes the logarithmic derivative to extract g from the exponent. The follow-
ing proof takes the more intuitive approach of direct size estimates.

To get started, suppose that f has no zeroes at all, that is, f (z) = eg(z). By hypothesis, for every
positive " there is a constant C" such that |f (z)| ≤ C" exp(|z|�+") for every z. But | exp(g(z))| =
exp(Re g(z)), so the hypothesis implies that Re(g(z)) ≤ log(C") + |z|�+". The lemma in § 5.6
implies that g is a polynomial of degree at most � + ". Since " is arbitrary, the degree of g is at
most �.
If f has some zeroes, but only finitely many, then f (z) = p(z)eg(z) for some polynomial p.

Since |p(z)| → ∞ when |z| → ∞, the order of the entire function f (z)∕p(z) is no greater than
the order of f (actually equal to the order of f ), so the preceding argument still applies to show
that g is a polynomial of degree at most �.
The difficult case occurs when f has infinitely many zeroes. To obtain an upper bound on |eg|

from an upper bound on |f | apparently requires a lower bound on the modulus of the convergent
infinite product ∏∞

n=1Ek(z∕zn), at least for values of z of large modulus. But the infinite prod-
uct has zeroes of arbitrarily large modulus, so this approach appears doubtful. Nonetheless, the
growth of eg can indeed be controlled by the growth of f even in the presence of infinitely many
zeroes, as the following argument shows.

Fix a positive ". The plan is to demonstrate the existence of a constant C" such that if |z| > 1
and also |z − zn| > 1∕|zn|k+1 for every n, then the infinite product ∏∞

n=1Ek(z∕zn) has modulus
no smaller than C" exp(−|z|�+2"). By the definition of rank, the sum of the radii of the excluded
disks is a convergent series, so there are arbitrarily large circles on which this lower bound for
the magnitude of the infinite product is valid. But |f (z)∕zm| is bounded above by exp(|z|�+")
on large circles, so combining the upper bound for |f | with the lower bound for the infinite
product shows that |eg(z)| is bounded above by a constant times exp(|z|�+3") on a sequence of
circles with radii tending to infinity. The resulting polynomial growth bound on Re g combines
with Carathéodory’s inequality and the remark in § 5.1 to show that the entire function g is a
polynomial of degree at most � + 3". Since " can be arbitrarily close to zero, the degree of g is
at most �.

To obtain the required lower bound on the infinite product when 1 < |z| = r, split the factors
into two subsets, depending on whether |zn| < 2r or 2r ≤ |zn|. For the second case, apply the
lemma in § 3.2 to deduce that

|Ek(z∕zn)| ≥ exp(−|z∕zn|k+1) when |z∕zn| ≤ 1∕2 and k ≥ 1.
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When k = 0, observe that Re log(1 −w) = Re[w+ log(1 −w)] − Rew ≥ −|w|2 − |w| ≥ −2|w|
when |w| ≤ 1∕2, so |E0(z∕zn)| ≥ exp(−2|z∕zn|) when |z∕zn| ≤ 1∕2. Thus for every k, whether
0 or a positive integer, |Ek(z∕zn)| ≥ exp(−2|z∕zn|k+1) when |z∕zn| ≤ 1∕2. If �+ " ≤ k+1, then
|z∕zn|k+1 ≤ |z∕zn|�+" when |z∕zn| ≤ 1∕2, so

|

|

|

|

∏

2r≤|zn|
Ek(z∕zn)

|

|

|

|

≥ exp
(

−2r�+"
∞
∑

n=1
1∕|zn|�+"

)

.

The infinite series in the exponent converges (since � equals the cutoff convergence exponent),
so the indicated part of the infinite product is bounded below by the exponential of a negative
constant times r�+". On the other hand, if � + " > k + 1, then

|

|

|

|

∏

2r≤|zn|
Ek(z∕zn)

|

|

|

|

≥ exp
(

−2rk+1
∞
∑

n=1
1∕|zn|k+1

)

≥ exp
(

−2r�+"
∞
∑

n=1
1∕|zn|k+1

)

when r > 1, so again this part of the infinite product is bounded below by the exponential of a
negative constant times r�+". What about the other part of the infinite product?

If |zn| < 2|z| = 2r, and |z − zn| > 1∕|zn|k+1, then
|

|

|

|

1 − z
zn

|

|

|

|

> 1
|zn|k+2

≥ 1
(2r)k+2

.

Since 2r > 1, each such lower bound is less than 1, and
∏

|zn|<2r

|

|

|

|

1 − z
zn

|

|

|

|

≥ 1
(2r)(k+2)n(2r)

.

Now n(2r) is bounded above by logM(6r) by the corollary to Jensen’s formula from § 5.4, and
f has order �, so the preceding expression is bounded below by the exponential of a negative
constant times r�+" when r is sufficiently large. The lower bound from the proof of the lemma
in § 5.3 shows that

|

|

|

|

|

|

exp

[

z
zn
+ 1
2

(

z
zn

)2

+⋯ + 1
k

(

z
zn

)k
]

|

|

|

|

|

|

≥ exp
(

−2k
|

|

|

|

z
zn

|

|

|

|

k)

≥ exp
(

−2�+"
|

|

|

|

z
zn

|

|

|

|

�+")

when |zn| < 2|z|. Therefore the product of these terms over all zeroes for which |zn| < 2|z| isbounded below by
exp

(

−2�+"|z|�+"
∞
∑

n=1

1
|zn|�+"

)

.

In summary, when z lies outside the excluded disks, and r is sufficiently large, each of the
three pieces of the infinite product is bounded below by the exponential of a negative constant
times r�+". Therefore the whole infinite product is bounded below by a positive constant times
exp(−r�+2") when r is sufficiently large and z lies outside the excluded disks. This deduction is
the last step needed to complete the proof of Hadamard’s factorization theorem.
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6 Harmonic functions

6.1 Definition

The following theorem says that several different properties are equivalent. A real-valued function
satisfying any one of the properties is called a harmonic function. (Some authors call a complex-
valued function “harmonic” when both the real part and the imaginary part are harmonic.)
Theorem. The following properties of a real-valued function u on an open set G are equivalent.

1. On each disk contained inG, there exists a holomorphic function whose real part equals u.

2. Every point in G is the center of some disk on which there exists a holomorphic function
whose real part equals u.

3. The function u is twice continuously differentiable (that is, the second-order real partial
derivatives uxx, uxy, uyx, and uyy exist and are continuous), and uxx + uyy = 0 (that is, the
function u satisfies Laplace’s equation).

4. The function u is continuous and satisfies the small-circle mean-value property: namely,
for each point z0 in G, there is a positive radius r0 (allowed to depend on z0) such that if
0 < r < r0, then

u(z0) =
1
2� ∫

2�

0
u(z0 + rei�) d�.

5. The function u is continuous and satisfies the mean-value property on every closed disk
contained in G.

Proof. Evidently item 1 implies item 2. The plan of the rest of the proof is to show that item 2
implies item 3 which in turn implies item 1. Hence the first three properties are equivalent to each
other. Evidently item 5 implies item 4. What remains is to show that item 4 implies one of the
first three properties, and one of the first three properties implies item 5.

If item 2 holds, then each point of G has a neighborhood in which there is a function v such
that u + iv is holomorphic. Then ux = vy and uy = −vx by the Cauchy–Riemann equations.
Differentiating the first equation with respect to the first variable and the second equation with
respect to the second variable and adding shows that uxx + uyy = vyx − vxy = 0. (Since the
holomorphic function u+ iv has continuous derivatives of all orders, so do the functions u and v,
whence the mixed second-order partial derivatives of v match.) Thus item 2 implies item 3.
If item 3 holds, then fix a disk inGwith center point (x0, y0), and define a “harmonic conjugate”

function v in the disk by the following line integral:

v(x, y) = ∫

(x,y)

(x0,y0)
us(s, t) dt − ut(s, t) ds.
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The integral is well defined—independent of the path joining the two points—because Laplace’s
equation implies that the integral over a closed loop is zero by Green’s theorem. (In fancier
language, the integral is path independent because the integrand is a closed differential form.)
The fundamental theorem of calculus implies that if v is defined by this formula, then v is a
continuously differentiable function with the property that vx = −uy and vy = ux. In other words,the Cauchy–Riemann equations hold, so the function u + iv is holomorphic in the disk. Thus
item 3 implies item 1.

If item 1 holds, andD is a closed disk contained inG with center z0 and radius r, then there is aholomorphic function f inD of which u is the real part. The mean-value property of holomorphic
functions implies that

f (z0) =
1
2� ∫

2�

0
f (z0 + rei�) d�.

Taking the real part shows that item 5 holds.
The remaining step in the proof is to show that item 4 implies one of the first three properties.

This step requires the development of a new tool (the Poisson integral) and is therefore postponed.

Observe that the construction of a harmonic conjugate function in the proof did not really
require working on a disk: the same argument applies on an arbitrary simply connected region.
On the other hand, if the region is not simply connected, then a harmonic function need not be
equal to the real part of a holomorphic function globally.
Exercise. The function log |z|2 is well defined and harmonic on ℂ⧵{0}, the punctured plane, but
there is no holomorphic function f on the punctured plane such that Re f (z) equals log |z|2.
Exercise. If u is harmonic and g is holomorphic, then the composite function u◦g is harmonic.

6.2 Poisson integral on the disk

Experiencewith the Cauchy integral suggests the possibility of recovering a holomorphic function
from its real part by a suitable integral over the boundary of a region. A preliminary step is to
see how to recover a harmonic function from a boundary integral. In the case of the unit disk, the
formula is named for Siméon Denis Poisson (1781–1840), a contemporary of Cauchy.

Here is a magic trick for deriving the Poisson integral from the mean-value property. If u is
continuous on the closed unit disk and harmonic on the open disk, then the mean-value property
yields that

u(0) = 1
2� ∫

2�

0
u(ei�) d� = 1

2�i ∫
|w|=1

u(w) dw
w
.

Let a be an arbitary point in the open unit disk, and compose with the disk automorphism 'a[recall that 'a(z) = (a − z)∕(1 − az)] to see that

u(a) = u◦'a(0) =
1
2�i ∫

|w|=1
u('a(w))

dw
w
.
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Make a change of variable, replacingw by 'a(w) and remembering that 'a is self-inverse. Since
dw
w

= d(logw) locally,

and w = 1∕w on the boundary of the disk,
d'(w)
'(w)

=
(

1
w − a

+ a
1 − aw

)

dw =
(

w
w − a

+ a
w − a

)

dw
w

when |w| = 1.

The expression in parentheses simplifies to 1 − |a|2

|w − a|2
, so

u(a) = 1
2� ∫

2�

0
u(ei�)

1 − |a|2

|ei� − a|2
d�. (1)

This formula is the Poisson integral representation for a harmonic function u on the unit disk.
Moreover,

1 − |a|2

|ei� − a|2
= Re w + a

w − a
when w = ei�,

so the real-valued harmonic function u(a) is the real part of the holomorphic function
1
2�i ∫

|w|=1
u(w)w + a

w − a
⋅
dw
w

when |a| < 1.

This second formula, named for Hermann Amandus Schwarz (1843–1921), explicitly determines
a holomorphic function (up to an additive purely imaginary constant) from the real part.

Notice that the Poisson kernel
1
2�

⋅
1 − |a|2

|ei� − a|2

is a positive function whose integral from 0 to 2� is equal to 1 (as follows from (1) when u is
identically equal to 1). Accordingly, the Poisson integral (1) exhibits the value u(a) as a weighted
average of the boundary values of u.

This interpretation of the Poisson integral immediately yields a local maximum principle for
real-valued harmonic functions: if the restriction of a harmonic function to a closed disk attains
a (weak) maximum at an interior point a, then the function reduces to a constant. Indeed, if the
weighted average u(a) is a maximum, then the values of u on the boundary must all be equal
to u(a). Invoking (1) again at a different interior point shows that u is constantly equal to u(a)
everywhere in the disk. Considering the negative of u shows that harmonic functions satisfy a
minimum principle too.
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6.3 The Dirichlet problem for the disk

The preceding discussion shows that the Poisson integral reproduces harmonic functions on the
unit disk. A little more work shows that the Poisson integral additionally solves the “Dirichlet
problem” of finding a harmonic function on the disk with prescribed boundary values.

Suppose that a real-valued function u is given on the boundary circle. Define the Poisson
integral of u at a point a in the disk to be

1
2� ∫

2�

0
u(ei�)

1 − |a|2

|ei� − a|2
d� or, equivalently, 1

2� ∫

�

−�
u(ei�)

1 − |a|2

|ei� − a|2
d�.

The integral makes sense if the function u is continuous, or (more generally) Riemann integrable,
or (still more generally) Lebesgue integrable. When the point a lies inside the disk, the integral
defines a function of a that is harmonic, because the Poisson kernel is the real part of a holomor-
phic function. Is the limit of this function when a tends to a boundary point equal to the value of
the original function u at that point?

The following argument shows that the answer is affirmative if u is continuous at the specified
boundary point. In view of the rotational invariance, verifying the claim at the specific boundary
point 1 suffices. The Poisson integral certainly reproduces constant functions, so the difference
between the value of the Poisson integral of u at a and the constant value u(1) is

1
2� ∫

�

−�

1 − |a|2

|ei� − a|2
(

u(ei�) − u(1)
)

d�.

Fix an arbitrary positive ", and invoke the continuity of the function u at the point 1 to choose a
positive � such that |u(ei�) − u(1)| < " when |�| < �. Split the integral into the part for which
|�| < � and the part for which |�| ≥ �. The integral over the first part is at most

"
2� ∫

|�|<�

1 − |a|2

|ei� − a|2
d�,

which by the positivity of the Poisson kernel does not exceed
"
2� ∫

�

−�

1 − |a|2

|ei� − a|2
d�, or ",

the inequality being independent of the value of a inside the disk. The integral over the second
part, where |�| ≥ �, tends to 0when a tends to 1 since the Poisson kernel converges to 0 uniformly
on that piece. Since " is arbitrary, the limit of the value of the Poisson integral of u at a tends to
u(1) when a tends to 1.

When the boundary function is continuous on the whole boundary, uniqueness of the solution
of the Dirichlet problem in the disk is easy. Indeed, the difference of two solutions is a harmonic
function with boundary value identically equal to zero; by themaximum andminimum principles,
such a function is identically equal to zero inside the disk.
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6.4 Badly behaved harmonic conjugates

The question arose in class of whether there can exist a holomorphic function on the open unit
disk whose real part extends to be continuous on the closed disk but whose imaginary part does
not extend to be continuous on the closed disk. When the real part has continuous boundary
values, the imaginary part can be obtained in the interior of the disk from the formula of Schwarz
worked out in § 6.2. But the proof in § 6.3 about good boundary behavior of the Poisson integral
does not carry over to the imaginary part of the Schwarz integral. The question therefore is an
interesting one. One way to see that examples do exist is to apply the following theorem.
Theorem (Carathéodory’s theorem on boundary behavior of the Riemann map). Every bijec-
tive holomorphic map from the open unit disk onto a Jordan region necessarily extends to be a
bijective continuous map between the closed unit disk and the closure of the Jordan region.

According to the famous Jordan curve theorem, a simple closed curve (that is, the image of the
unit circle under an injective continuous map) divides the plane into precisely two components,
one bounded and the other unbounded. The bounded component is a Jordan region.

Notice that if the Riemann map extends to the boundary as a continuous injection of the
closed disk, then the image region is necessarily a Jordan region. Accordingly, the hypothesis
in Carathéodory’s theorem is the natural assumption. An elementary proposition of point-set
topology says that a continuous bijection between compact Hausdorff spaces is a homeomor-
phism (that is, the inverse map is continuous too), so the conclusion of Carathéodory’s theorem
can be rephrased as saying that the Riemann map extends to be a homeomorphism of the closed
regions.

The theoremwas proved byCarathéodory3 and is usually referred to by his name, butWilliamF.
Osgood and Edson H. Taylor published the result the same year as Carathéodory as a special case
of a more general theory.4 Incidentally, finding the correct analogue of Carathéodory’s theorem
for holomorphic mappings in higher dimension is an unsolved problem.

In view of Carathéodory’s theorem, the construction of a good harmonic function with a bad
harmonic conjugate function can equivalently be carried out on some Jordan region other than
the unit disk. Consider the Jordan region in the first quadrant bounded by the segment of real axis
from 0 to 1, a vertical line segment from the point 1 to the point 1+ i, and the arc of the parabola
defined in standard real coordinates by the property that y = x2.

The function that sends the complex variable z to −i log(z) is holomorphic on the open region.
The real part is the harmonic function arg(z), or � in polar coordinates. Evidently � is continuous
on the open right-hand half-plane. Moreover, the ratio y∕x, which equals tan−1 � in the open
Jordan region, tends to 0 when (x, y) is a point of the region and x → 0. Thus � extends to be
3Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve
auf einen Kreis, Mathematische Annalen 73, no. 2 (1913) 305–320.

4See Corollary 1 on page 294 of their paper, Conformal transformations on the boundaries of their regions of
definition, Transactions of the American Mathematical Society 14, no. 2 (1913) 277–298. The main results of
this paper were announced by Osgood a decade earlier: On the transformation of the boundary in the case of
conformal mapping, Bulletin of the American Mathematical Society 9 (1903) 233–235.
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a continuous function on the closed Jordan region, the value at the origin being 0. On the other
hand, the imaginary part of the specified holomorphic function is log(1∕|z|), which is unbounded
at the origin and so does not extend to be continuous on the closed Jordan region.

6.5 The small-circle mean-value property

Just asMorera’s theorem gives a way to characterize holomorphic functions by integration instead
of by differentiation, the small-circle mean-value property gives a way to characterize harmonic
functions via integration. The tools are in hand now to complete the missing step in the proof of
the theorem stated in § 6.1.

The claim is that if u is a continuous real-valued function on some open set, and if for every
point z in the set there is a positive radius r (depending on z) such that the average of u on every
circle centered at z of radius less than r equals u(z), then u is necessarily harmonic. (In particular,
the function u turns out to be not merely continuous but actually infinitely differentiable.)

Harmonicity is a local property, so there is no loss of generality in supposing that the domain
of u is a disk and that u is continuous on the closure of this disk. Scaling and translation do not
affect the problem, so there is no loss of generality in taking the disk to be the unit disk centered
at 0.

A key observation is that the small-circle mean-value property implies a maximum principle:
the continuous function umust attain its maximum on the boundary of the disk. Why? Since u is
continuous on a compact set, a maximum is attained somewhere. If the maximum is attained at
an interior point, then the mean value of u on every small circle centered at that point equals the
maximum, so u must be constantly equal to the central value on small circles. Hence u is locally
equal to the maximum. A standard connectedness argument now shows that u is constantly equal
to the maximum. So the maximum is taken on the boundary in any case.

Consider P [u], the Poisson integral of the boundary value of u. The solution of the Dirichlet
problem on the disk shows that P [u] matches u on the boundary.

Being harmonic inside the disk, the function P [u] has the small-circle mean-value property.
The difference u − P [u] satisfies the small-circle mean-value property since both u and P [u]
do. The observation in the preceding paragraph shows that u − P [u] attains its maximum on the
boundary. This boundary value equals 0, so u − P [u] ≤ 0 inside the disk. Precisely the same
argument applies to the difference P [u] − u, so P [u] − u ≤ 0. The two inequalities combine to
show that u − P [u] is identically equal to 0.
Accordingly, a function u satisfying the small-circle mean-value property is harmonic because

locally umatches a known harmonic function. This conclusion completes the proof of the theorem
in § 6.1.

6.6 Harnack’s principle

Proposition. An increasing sequence of harmonic functions on a connected open set converges
uniformly on compact subsets either to +∞ or to a harmonic function.

48



The proposition is named for Axel Harnack (1851–1888), a Baltic German mathematician.
A corresponding statement holds for a decreasing sequence of harmonic functions, since the
negative of a harmonic function is again a harmonic function.

The proof depends on Harnack’s inequality for positive harmonic functions: namely, if u is
harmonic and nonnegative in the unit disk, and 0 < r < 1, then

u(0)1 − r
1 + r

≤ u(rei�) ≤ u(0)1 + r
1 − r

.

Indeed, since u is nonnegative, the Poisson integral representation and the mean-value property
imply that

u(rei�) = 1
2� ∫

2�

0
u(ei') 1 − r2

|rei� − ei'|2
d' ≤ 1

2� ∫

2�

0
u(ei') 1 − r

2

(1 − r)2
d' = u(0)1 + r

1 − r
.

(Strictly speaking, one should integrate over a slightly smaller circle and take the limit.) The
other inequality follows in the same way, using that |rei� − ei'|2 ≤ (1 + r)2.
Proof of Harnack’s principle. Replacing the increasing sequence {un} by {un−u1} reduces to thecase of nonnegative functions, so one might as well assume from the beginning that the functions
are nonnegative. Harnack’s inequality is then in force. Suppose the domain contains the unit disk.
The increasing sequence {un(0)} of real numbers either tends to +∞ or is a Cauchy sequence.
In the former case, Harnack’s inequality implies that the sequence {un} converges uniformly on
compact sets to +∞. In the latter case, the same reason implies that the sequence is uniformly
Cauchy on compact subsets of the disk. The continuous limit function is represented by the Pois-
son integral and so is harmonic. The generalization from convergence on disks to convergence
on general connected open sets is a routine compactness argument.

7 Dirichlet problem on general domains

7.1 Dirichlet problem

The Poisson integral solves the Dirichlet problem on a disk. The corresponding problem in a
general region is not always solvable.
Example. In the punctured disk { z ∈ ℂ ∶ 0 < |z| < 1 }, there is no harmonic function u such
that u has boundary value 0 on the outer boundary and boundary value 1 on the inner boundary.

Why? Seeking a contradiction, suppose that such a harmonic u exists. The maximum principle
implies that u is bounded between 0 and 1, but more is true. Fix a positive ", and apply the
maximum principle to the harmonic function u(z) + " log |z| on the annulus with outer radius 1
and inner radius exp(−1∕"). This function is negative on the inner boundary and approaches 0 at
the outer boundary, so u(z) + " log |z| < 0 for z in the annulus. Holding z fixed, let " go to 0 to
deduce that u(z) ≤ 0 when 0 < |z| < 1. This conclusion contradicts the assumption that u has
boundary value 1 at the origin.
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This example reveals the basic obstruction to solvability of the Dirichlet problem: thinness
of the boundary. An upcoming theorem says that the Dirichlet problem is solvable when every
component of the boundary contains more than one point (and even more generally).

The method to be considered is due5 to the German mathematician Oskar Perron (1880–1975),
who is noted for beautiful expository books, especially one on continued fractions. Additionally,
he is remembered for the Perron integral, for a formula in analytic number theory, and for the
Perron–Frobenius theorem in linear algebra about eigenvalues of matrices with positive entries
(a result that has applications to internet search engines).

7.2 Subharmonic functions

A key tool in Perron’s method for solving the Dirichlet problem is a class of functions known
nowadays as subharmonic functions. The philosophy is that holomorphic functions and harmonic
functions can be inconveniently rigid: the values of the function on an open set determine the
values of the function everywhere. In particular, there are no holomorphic or harmonic partitions
of unity. By contrast, subharmonic functions are flexible, enabling cut-and-paste operations. Yet
there is a way to pass from flexible subharmonic functions to rigid harmonic functions through
taking upper envelopes.

Roughly speaking, subharmonic functions sit underneath harmonic functions in the same way
that convex functions sit underneath affine linear functions. Like convex functions, subharmonic
functions need not be everywhere differentiable. In fact, subharmonic functions need not be
continuous (although continuous ones will do for a basic solution to the Dirichlet problem).

The natural context for subharmonic functions is the class of real-valued upper semicontinu-
ous functions. A function u (defined on an open subset of a topological space) taking values in
[−∞,∞) is called upper semicontinuous if any of the following equivalent conditions holds:

• lim supz→z0 u(z) ≤ u(z0) for every point z0 in the domain of u.
• Reinterpretation of the preceding statement: For every numberM larger than u(z0), thereis a neighborhood of z0 such that u(z) < M when z is in that neighborhood. If u(z0) ≠ −∞,

then the numberM can be written conveniently in the form u(z0) + ".• The set { z ∶ u(z) < c }, the inverse image of [−∞, c) under u, is open for every real
number c.

The word “upper” in the definition corresponds to the upper half of the inequality that charac-
terizes continuity. What the condition says about the graph of the function is that the dot at a
discontinuity fills in at (or above) the high point.

A reason for allowing the value −∞ but excluding the value +∞ is that upper semicontinuous
functions arise naturally as pointwise limits of decreasing sequences of continuous finite-valued
functions. Such limits can attain the value −∞ but not the value +∞.
Proposition. An upper semicontinuous function is bounded above on every compact set and
attains the least upper bound.
5Oskar Perron, Eine neue Behandlung der ersten Randwertaufgabe für Δu = 0, Math. Z. 18 (1923), no. 1, 42–54.
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Proof. The hypothesis implies that every point z in the compact set K has a neighborhood on
which the function u is bounded above by u(z) + 1. Finitely many such neighborhoods cover K .
Hence u is bounded above on K .

If the least upper boundM is not attained, then the compact setK is covered by the sequence of
open sets of the form { z ∶ u(z) < M − 1

n
} (where n runs through the natural numbers), but there

is no finite subcover. The contradiction shows that the boundM must be attained after all.
If G is an open set in ℂ, then an upper semicontinuous function u is called subharmonic6 if

for every disk in G and for every harmonic function v on the disk, the difference u− v satisfies a
local maximum principle: namely, the function u−v cannot have a strict local maximum and can
attain a weak local maximum at a point only if u − v is constant in a neighborhood of the point.
Thus if u ≤ v on the boundary of the disk, then u ≤ v in the interior of the disk.

This property evidently is local. The property needs to hold merely on all sufficiently small
disks. In other words, for every point z0 there should be a radius r0 such that the property holds
on each disk B(z0; r) when 0 < r < r0.
Example. If f is holomorphic, then log |f | is subharmonic. (The function is defined to be equal
to −∞ at zeroes of f .)

Indeed, if v is harmonic, then log |f |−v evidently cannot attain a local maximum at a zero of f
(except in the trivial case that f is identically equal to 0). And away from the zeroes of f , there
is a locally defined branch of log f , so log |f | is harmonic, whence the difference log |f | − v is
harmonic too. Hence there cannot be a local maximum unless the function is constant.
Example. If u(x, y) = min(0, x2 − y2) in ℂ, then u is not subharmonic.
Indeed, if v(x, y) is the harmonic function x2 − y2, then u(x, y) − v(x, y) is equal to 0 when

x2−y2 ≤ 0 and is equal to the negative quantity −(x2−y2)when x2−y2 > 0. Hence u−v attains
a maximal value of 0 but is not constant in a neighborhood of any point at which x = y, violating
the maximum principle.

The initial definition of subharmonicity appears hard to verify in concrete examples. For func-
tions having some regularity, there are equivalent properties that are easier to check than the
original definition.

If u is continuous, then an equivalent property is the local sub-mean-value property. In other
words, for each point z0 there is a radius r0 such that

u(z0) ≤
1
2� ∫

2�

0
u(z0 + rei�) d� when 0 < r < r0.

Indeed, if u satisfies the sub-mean-value property, then so does u − v when v is harmonic.
Hence u − v satisfies the local maximum principle (for if the average value at the center of some
disk is maximal, then the integrand must be constant on the disk). Conversely, if u−v satisfies the
local maximum principle for every harmonic v, then in a small disk let v be the Poisson integral
of u. The maximum principle implies that the value of u at the center is at most the value of
6Some authors exclude the function that is identically equal to −∞.
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the Poisson integral of u at the center, which equals the average of the values of u around the
boundary circle. Hence u has the sub-mean-value property. The same argument shows that if
u has the local sub-mean-value property, then u has the global sub-mean-value property on every
disk whose closure lies inside the domain of u.
(The local sub-mean-value property can be used to characterize subharmonicity in general,

when u is merely upper semicontinuous instead of continuous, if you are willing to accept the
Lebesgue integral. You need to go back to the discussion of the Poisson integral on the unit
disk and check that the Poisson integral of a merely upper semicontinuous function produces a
harmonic function whose lim sup at the boundary sits below the boundary value.)

If u is twice continuously differentiable, then an equivalent condition to subharmonicity is that
Δu ≥ 0, where Δ is the Laplace operator. For the proof, suppose first that Δu > 0 with strict
inequality. If v is harmonic, then Δ(u− v) = Δu > 0. Hence u− v cannot have a local maximum,
because at a local maximum, the second derivatives )2∕)x2 and )2∕)y2 of a function must be
negative or zero. So u − v does indeed satisfy the local maximum principle.
Next suppose only that Δu ≥ 0. The goal is to show that if v is a harmonic function in a small

disk, say in B(0; r), and if u ≤ v on the boundary of the disk, then u ≤ v inside the disk. If " is
an arbitrary positive number, then u(z) + "|z|2 has strictly positive Laplacian, and u(z) + "|z|2 ≤
v(z) + "r2 on the boundary of the disk, so the previous case implies that u(z) + "|z|2 ≤ v(z) + "r2
inside the disk. Now let " go to zero.
Conversely, suppose that a twice continuously differentiable function u is subharmonic. Why is

Δu ≥ 0? In the contrary case, Δu would be negative on some open set. By what was just proved,
the function −u would be subharmonic on that set. Then both u− v and −u− (−v) would satisfy
the maximum principle for every harmonic function v. Setting v equal to the Poisson integral of u
on a small disk implies that u is equal to its local Poisson integral, that is, u is harmonic. Hence
Δu cannot be negative after all.
Example. Here are some standard ways to produce subharmonic functions.

• |f | when f is holomorphic. (The subharmonicity is easy to check from the mean-value
property.)

• |f |p when p is a positive number and f is holomorphic. (At zeroes of f , the sub-mean-
value property is immediate. Away from zeroes of f , there is a local holomorphic branch
of f p, so the subharmonicity follows from the preceding example.)

• u◦f , where u is subharmonic and f is holomorphic. (When u is twice continuously dif-
ferentiable, compute that Δ(u◦f ) = |f ′|2(Δu)◦f . In general, approximate u by smooth
subharmonic functions, which can be done by convolving with a mollifier.)

• �u1 + �u2, where u1 and u2 are subharmonic, and � and � are nonnegative real numbers.
(This case is clear from the sub-mean-value property.)

• max(u1, u2) (pointwise maximum), where u1 and u2 are subharmonic. (This case is clear
from the sub-mean-value property.)

• More generally, suppose {ut}t is a family of subharmonic functions, and consider the point-
wise supremum supt ut(z). In general, this envelope need not be upper semicontinuous, but
if the envelope is upper semicontinuous, then the envelope is subharmonic.
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[Aside: Here is an example of failure of upper semicontinuity of the envelope. The function
(1∕n) log |z| is subharmonic and negative in the unit disk for each natural number n. The
pointwise supremum of this sequence of functions equals 0 on the punctured disk but−∞ at
the center, hence is not upper semicontinuous. On the other hand, for a family that is locally
bounded above, the upper semicontinuous regularization of the envelope is subharmonic.]
To see why the envelope is subharmonic, apply the sub-mean-value property. If a positive "
is specified, and a point z0 is specified, then there is some parameter value t0 such that

sup
t
ut(z0) ≤ ut0(z0) + " ≤

1
2� ∫

2�

0
ut0(z0 + re

i�) d� + "

≤ 1
2� ∫

2�

0
sup
t
ut(z0 + rei�) d� + ".

Letting " go to 0 shows that the upper envelope has the sub-mean-value property.
• log(1+ |z|) is subharmonic. In principle, the subharmonicity can be verified by computing

second derivatives, but the calculation is nasty. Here is a trick. Observe that
log(1 + |z|) = sup

�
log |1 + ei�z|,

by the triangle inequality. For each fixed �, the function log |1+ei�z| is subharmonic, being
the logarithm of the modulus of a holomorphic function. The envelope is not only upper
semicontinuous but even continuous. Hence the preceding example shows that log(1+ |z|)
is subharmonic.

• If u is subharmonic in a region, and D is a closed disk in the region, build a new function
by replacing u inside D by the Poisson integral of the value of u on )D. Then u satis-
fies the mean-value property at points inside D and the sub-mean-value property at points
outside D. What about points on )D? The original function satisfies the sub-mean-value
property at these points, and the Poisson integral is at least as large as u inside D, so the
average value of the new function increases. Hence the sub-mean-value property can only
improve. Thus local “Poissonization” of a subharmonic function produces a new subhar-
monic function.

7.3 Hadamard’s theorems on three lines and three circles

Since the modulus of a holomorphic function is subharmonic, some versions of the maximum
principle are most naturally stated in the context of subharmonic functions. Here is a family of
examples that appear in applications.
Theorem. Suppose that u is a subharmonic function in a strip { (x, y) ∈ ℝ2 ∶ a < x < b }, and
u is bounded above. Let M(x) denote sup{ u(x, y) ∶ y ∈ ℝ }. ThenM(x) is a convex function
of x on the interval (a, b).
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The word “convex” is to be understood in the usual sense of real analysis: namely, if x1 and x2are two arbitrary points in the interval (a, b), and t is a real number between 0 and 1, then
M(tx1 + (1 − t)x2) ≤ tM(x1) + (1 − t)M(x2).

The geometric content of the inequality is that the graph of the functionM lies below each chord:
convex functions are “sublinear.” The reason for the name “three lines” is that bounds on the
function on two lines control the size of the function on any third line in between.
Proof. Since subharmonicity is a property that is preserved by translations and by dilations, there
is no loss of generality in supposing that a = −�∕2 and b = �∕2. Suppose x1 and x2 are twoarbitrary numbers such that −�∕2 < x1 < x2 < �∕2. What needs to be shown is that if p is a
first-degree polynomial of one real variable such thatM(x1) ≤ p(x1) andM(x2) ≤ p(x2), then
M(x) ≤ p(x) whenever x1 < x < x2.The second derivative of p is identically equal to zero, so p(x) can be viewed as a harmonic
function that happens to be independent of y. Consider for an arbitrary positive " the function

u(x, y) − p(x) − "Re cos(x + iy). (2)
Since the real part of cos(x + iy) equals cos(x) cosh(y), which is strictly positive in the strip
where |x| < �∕2, the indicated function (2) is negative on the vertical lines where x = x1 and
x = x2. Moreover, the real part of cos(x+ iy) tends to+∞when |y| → ∞, and the convergence is
uniform with respect to x between x1 and x2. By hypothesis, the function u is bounded above, sofor sufficiently largeR, the function (2) is negative on the horizontal line segments where y = ±R
and x1 ≤ x ≤ x2.The function (2) is the difference between a subharmonic function and a harmonic function,
so the maximum principle for bounded regions implies that for every sufficiently large R, the
expression (2) is negative on the rectangular region where x1 ≤ x ≤ x2 and |y| ≤ R. Letting
R tend to infinity shows that the expression (2) is negative on the whole strip where x1 ≤ x ≤ x2.Letting " tend to zero shows that u(x, y) ≤ p(x) when x1 ≤ x ≤ x2. Taking the supremum over y
shows thatM(x) ≤ p(x) when x1 ≤ x ≤ x2, as claimed.
Remark. The three-lines theorem can be viewed as a maximum principle that applies to a special
unbounded region. If u is bounded above by some unknown constant in a strip, and u is bounded
above on the sides of the strip by a specific constant C , then the theorem implies that u is bounded
above by the same constant C inside the strip.

The proof reveals that the hypothesis of boundedness of u can be relaxed. What is needed is
that u does not grow too fast at infinity. For instance, if there are positive constants A and B,
with B strictly less than 1, such that u(x, y) ≤ AeB|y| when −�∕2 < x < �∕2, then an upper
bound for u on two lines implies the same upper bound on the region between the two lines. For
a general interval (a, b), the requirement is that B < �∕(b− a). Generalizations along these lines
are part of so-called Phragmén–Lindelöf theory.
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Corollary. Suppose that f is holomorphic, not identically zero, and bounded in a vertical strip.
LetM(x) denote sup{ |f (x + iy)| ∶ y ∈ ℝ }. Then logM(x) is a convex function; equivalently,
if x1 and x2 are real numbers in the strip, and 0 < t < 1, then

M(tx1 + (1 − t)x2) ≤M(x1)tM(x2)1−t.

Proof. Apply the preceding theorem to the subharmonic function log |f | and exponentiate the
convexity inequality.
Remark. Since the geometric mean is no larger than the arithmetic mean, the corollary implies
(but is stronger than) the statement thatM(x) is a convex function.

The exponential function wraps a vertical line around a circle. Accordingly, the preceding
results produce analogous theorems for circular geometry.
Theorem. Suppose that u is a subharmonic function in an annulus { z ∈ ℂ ∶ a < |z| < b }
with inner radius a and outer radius b. Let m(r) denote the maximum of u(z) when |z| = r. If
a < r1 < r < r2 < b, then

m(r) ≤
log r2 − log r
log r2 − log r1

m(r1) +
log r − log r1
log r2 − log r1

m(r2).

Sometimes this inequality is described by saying that m(r) is “a convex function of log r.” In
other words, the composite function m(er) is convex. An equivalent formulation of the inequality
is that

m(r) ≤
log r2

r

log r2
r1

m(r1) +
log r

r1

log r2
r1

m(r2).

Proof. Applying the three-lines theorem to the function u(ez), which is subharmonic in the strip
where log a < Re z < log b, shows that

m(ex) ≤
x2 − x
x2 − x1

m(ex1) +
x − x1
x2 − x1

m(ex2)

when log a < x1 < x < x2 < log b. The required inequality follows by setting x equal to log r
and x1 equal to log r1 and x2 equal to log r2.Alternatively, let v(z) denote the harmonic function

log r2 − log |z|
log r2 − log r1

m(r1) +
log |z| − log r1
log r2 − log r1

m(r2)

in the annulus where a < |z| < b. Then v(z) takes the constant value m(r1) when |z| = r1and the constant value m(r2) when |z| = r2, so the definition of subharmonic function implies
that u(z) ≤ v(z) when r1 < |z| < r2. Taking the supremum when |z| = r gives the required
inequality.
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Corollary. Suppose that f is a holomorphic function in an annulus { z ∈ ℂ ∶ a < |z| < b }. Let
M(r) denote the maximum of |f (z)| when |z| = r. If a < r1 < r < r2 < b, then

M(r) ≤M(r1)�M(r2)1−�, where � =
log r2

r

log r2
r1

.

In other words, the function logM(r) is a convex function of log r. The proof follows directly
from the preceding theorem by applying the statement to the subharmonic function log |f | and
exponentiating the inequality.

7.4 Perron’s method

Suppose ' is a given function on the boundary of a bounded region. Consider the class of all
subharmonic functions in the region whose boundary values do not exceed those of '. Take the
pointwise supremum of all such subharmonic functions. If there is a solution of the Dirichlet
problem, then this construction must yield the solution, for the putative solution is in the class.
Moreover, the putative solution is an upper bound for all subharmonic functions with the given
boundary values.

The question, then, is whether the upper envelope actually does solve the Dirichlet problem.
The counterexample mentioned earlier (the punctured disk) shows that some information about
the boundary has to come into play. The essential element turns out to be the existence (or the non-
existence) of subharmonic peak functions. A peak function corresponding to a boundary point z0of a regionGmeans a negative function u onG such that limz→z0 u(z) = 0 and lim supz→w u(z) < 0when w ∈ )G ⧵ {z0}.
Theorem (Solvability of the Dirichlet problem). If G is a bounded region in ℂ such that G
admits a subharmonic peak function corresponding to each boundary point, and if ' is a con-
tinuous function on the boundary of G, then there exists a harmonic function u on G such that
limz→w u(z) = '(w) for every point w in the boundary of G.

Moreover, if ' is the Perron family consisting of every subharmonic function v onG such that
lim supz→w v(z) ≤ '(w) for each w in the boundary of G, then u(z) = supv∈' v(z) for every z
in G.

The proof has two parts. The first part is to show that the envelope of the Perron family is
harmonic. That conclusion holds even without the hypothesis of the existence of peak functions.
The second part is to show that the peak functions force the envelope of the Perron family to have
the right boundary values.

In Perron’s method, a needed fact is that if ' is the boundary value of a function u that is
subharmonic in a neighborhood of the closed disk, then the Poisson integral of ' is at least as
large as u inside the disk. Since the previous discussion about the Poisson integral used continuity
of the boundary values, some further argument is needed to handle subharmonic boundary values.

The necessary proposition is that every upper semicontinuous function on a compact set (or on
any set where the function is bounded above) is the limit of a decreasing sequence of continuous
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functions. Namely, let'n(w) be supt{'(t)−n|t−w|}. (To see the point of this definition, considerthe case of a function that is constant except for a jump at one point.) When t = w, the expression
in brackets equals '(w), so 'n(w) ≥ '(w). Moreover, for each fixed t the expression in brackets
decreases as n increases, so the sequence {'n} is decreasing. IfM is an arbitrary number larger
than '(w), then by upper semicontinuity there is a neighborhood of w such that '(t) < M for
t in the neighborhood. On the other hand, the quantity |t − w| is bounded away from 0 outside
the neighborhood, and ' is bounded above, so '(t) − n|t − w| → −∞ uniformly outside the
neighborhood when n → ∞. It follows that 'n(w) < M for large n. Since M is arbitrary, the
limit to which the decreasing sequence {'n(w)} converges is '(w). What remains to see is that
'n is continuous. For arbitrary points w1 and w2, the triangle inequality implies that

'(t) − n|t −w1| ≥ '(t) − n|t −w2| − n|w1 −w2| for each t,
so 'n(w1) ≥ 'n(w2) − n|w1 − w2|. Interchanging w1 and w2 then shows that 'n is a Lipschitzfunction with Lipschitz constant equal to n. In particular, 'n is continuous.Returning to the Poisson integral, suppose that v is the Poisson integral of the boundary value
of a subharmonic function u. Approximate the boundary value by a decreasing sequence {un}of continuous functions. Let vn be the Poisson integral of un. Then vn has the boundary values
of un, so vn is a harmonic function than exceeds u on the boundary, whence vn exceeds u insidethe disk. The functions vn decrease inside the disk by the maximum principle. By the monotone
convergence theorem for integrals, the functions vn converge to v, which therefore dominates u
inside the disk.

This argument has a further implication. By Harnack’s principle, the limiting function v is
harmonic and not identically −∞ (unless u is identically −∞). Consequently, a subharmonic
function (not identically −∞) is integrable on each circle (that is, the integral is not −∞). For
similar reasons, subharmonic functions are area-integrable.

7.5 Return to the solution of the Dirichlet problem

Proof of the harmonicity of the Perron envelope. Suppose that G is a bounded domain, and ' is
a bounded function on the boundary. (For this part of the proof, the continuity of' is not needed.)
The goal is to show that the upper envelope u of the Perron family ' is harmonic.

Recall that a function v belongs to the Perron family if and only if v is subharmonic, and
lim supz→w v(z) ≤ '(w) for every point w in the boundary of G. IfM is a constant larger than
the supremum of ', then every function v in the Perron family has the property that v −M is
negative near the boundary of G and hence is negative everywhere inside G (by the maximum
principle; the boundedness of the domainG is used here). Therefore every function in the Perron
family is bounded above byM . Hence u, the upper envelope, is bounded above byM .

It suffices to verify harmonicity—a local property—on an arbitrary diskB(z0; r)whose closureis contained in G. Let {vn} be a sequence of subharmonic functions in the Perron family such
that the sequence {vn(z0)} increases up to u(z0). Replacing each vk by max{v1,… , vk} ensuresthat the sequence {vn} is increasing at each point of G.
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Next replace each vk with its “Poissonization” inside B(z0; r) to ensure that vk is harmonic
inside the disk. The modified sequence {vn} now is an increasing sequence in the Perron family,
and inside B(z0; r) this sequence is an increasing sequence of harmonic functions that converges
at z0 to u(z0). By Harnack’s principle, the limit of the sequence {vn} insideB(z0; r) is a harmonic
function, say v∗.

The proof is not finished, for what is known so far is that u, the Perron envelope, matches v∗,
a harmonic function, at one point. Does u match v∗ at other points of B(z0; r) besides z0?Suppose z1 is an arbitrary point of B(z0; r). Repeat the preceding construction to obtain an
increasing sequence {un} in the Perron family such that the sequence {un(z1)} converges to u(z1).Replacing each uk by max(uk, vk) gives a new increasing sequence of subharmonic functions in
the Perron family that converges to the upper envelope u at both z0 and z1. Poissonizing as beforeproduces a harmonic limit function u∗ in B(z0; r) that matches u at both z0 and z1.By construction, v∗ − u∗ ≤ 0 in B(z0; r), and v∗(z0) = u(z0) = u∗(z0). By the maximum
principle, the harmonic function v∗ − u∗ is identically equal to 0 in B(z0; r). Consequently,
v∗(z1) = u∗(z1) = u(z1). Since z1 is arbitrary, the function v∗ is a harmonic function in B(z0; r)that equals the envelope u in all of B(z0; r). Thus the envelope u is indeed harmonic (in all of G,
since z0 is arbitrary).
Proof that peak functions imply the right boundary values. Suppose now that the bounded func-
tion ' is continuous at z0 and that there is a subharmonic peak function for z0. The claim is that
the Perron envelope function u has limit at z0 equal to '(z0).There is no loss of generality in supposing that '(z0) = 0. (Simply subtract the constant value
'(z0) from all functions.) Two arguments are needed, one to show that the envelope is not too
big and another to show that the envelope is not too small.

Fix a positive ". The goal is to find a neighborhood of z0 such that −" < u(z) < " when z is
a point of G lying in the neighborhood. Since ' is continuous at z0, there is a radius r such that
−"∕2 < '(z) < "∕2 whenever z is a point of )G for which |z − z0| < r.Let  be a subharmonic peak function corresponding to z0. Since G is bounded, the inter-
section of the boundary of G with the closed set { z ∈ ℂ ∶ |z − z0| ≥ r } is compact, and each
point z of this compact set has a neighborhoodNz such that the upper semicontinuous function  
is negative onNz∩G. Taking a finite subcover produces an open neighborhoodU of the compact
set { z ∈ ℂ ∶ |z− z0| ≥ r } ∩ )G such that the function  has a negative upper bound on U ∩G,
say −�.

Showing that the upper envelope u is not too small near z0 requires constructing a particular
member of the Perron family that is not too small near z0. Let M be a positive constant so
large that M� exceeds the supremum of |'| on )G. If w is a point of )G at distance at least r
from z0, then lim supz→wM (z) ≤ −M� < '(w). On the other hand, ifw is a point of )Gwithin
distance r from z0, then lim supz→wM (z) ≤ 0 < '(w)+"∕2. Therefore the functionM −"∕2
belongs to the Perron family associated to the boundary function'. Accordingly,M (z)−"∕2 ≤
u(z) for every point z in G. By the definition of peak function, limz→z0M (z) = 0, so there is a
neighborhood of z0 in which −"∕2 < M (z). In this neighborhood, −" < u(z).
Showing that the upper envelope u is not too big near z0 requires finding an upper bound
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on every member of the Perron family. The construction in the preceding paragraph implies
that lim supz→wM (z) < −'(w) when w is a point of )G at distance at least r from z0, and
lim supz→wM (z) ≤ 0 < −'(w) + "∕2 when w is a point of )G within distance r from z0.Consequently, if v is an arbitrary member of the Perron family, then lim supz→w(v+M −"∕2) <
0 for every point w in )G. Since v+M − "∕2 is subharmonic, the maximum principle implies
that v +M − "∕2 is negative everywhere inside G. Thus v < −M + "∕2 inside G. Taking
the pointwise supremum over functions v in the Perron family shows that u ≤ −M + "∕2.
Since limz→z0 −M (z) = 0, there is a neighborhood of z0 in which −M (z) < "∕2. In this
neighborhood, u(z) < ".

In conclusion, there is a neighborhood of z0 such that −" < u(z) < " when z is a point of G in
the neighborhood. But " is arbitrary, so limz→z0 u(z) = 0, as claimed.

7.6 Remarks on barriers

7.6.1 Lebesgue

The term “barrier” was introduced by Henri Lebesgue7 as a name for a harmonic peak function
(more precisely, a family of functions). The details of the definition of barrier vary in modern
sources. The proof in § 7.5 uses subharmonic functions that are strict peak functions. As indicated
below, the hypothesis can be weakened somewhat, making the theoremmore general but the proof
more difficult.

Lebesgue even provided an algorithm for solving theDirichlet problemwhen there is a solution.
Suppose given a continuous function on the boundary of a bounded open set in the plane. Extend
the function arbitrarily to a continuous function on the closed region, say by the Tietze extension
theorem. Execute the following recursive construction.

Replace the value of the function at each point by the average value over the largest disk cen-
tered at the point and contained in the region (two-dimensional average over the disk, not one-
dimensional average over the boundary circle). Repeat the averaging process for the new function
that arises, and iterate.

Lebesgue showed that this sequence of averages converges uniformly to the solution of the
Dirichlet problem, assuming the existence of a harmonic barrier at each boundary point. The
same argument works assuming the existence of a subharmonic peak function at each boundary
point.

7.6.2 Necessity and sufficiency

The proof in § 7.5 shows that if there exists a subharmonic peak function on G corresponding to
the boundary point z0, and ' is a bounded function on )G that is continuous at z0, then the upperenvelope of the Perron family corresponding to ' has limit at z0 equal to '(z0). Some authors
say in this situation that the point z0 is a “regular point” for the Dirichlet problem.
7Sur le problème de Dirichlet, Comptes rendus hebdomadaires des séances de l’Académie des sciences 154 (1912)
335–337.
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What about the converse? If z0 is a regular point, that is, if the upper envelope of the Perronfamily ' has limit '(z0) at z0 whenever ' is continuous at z0, must there exist a subharmonic
peak function corresponding to z0?The answer is affirmative, for the following reason. The function that sends z to −|z − z0|certainly is continuous on )G. The upper envelope of the corresponding Perron family is then
a harmonic function ℎ on G having limit at z0 equal to zero. If v is an arbitrary member of the
Perron family, then v(z)+ |z−z0| is subharmonic (being the sum of two subharmonic functions),
and the defining property of the Perron family implies that lim supz→w∈)G(v(z)+ |z−z0|) ≤ 0 forevery point w in the boundary of G. The maximum principle for subharmonic functions implies
that v(z) + |z − z0| ≤ 0 for every point z inside G. Passing to the upper envelope shows that
ℎ(z) ≤ −|z − z0| when z ∈ G. Therefore the upper limit of ℎ at every boundary point other
than z0 is strictly negative. Thus ℎ is a (sub)harmonic peak function in the sense defined in § 7.4.

7.6.3 Locality

The existence of a subharmonic peak function corresponding to a boundary point z0 turns outto be a local property of the boundary of the region G near z0. In other words, if for some disk
B(z0; r) there is a negative subharmonic function � on G ∩ B(z0; r) such that limz→z0 �(z) = 0and lim supz→w �(z) < 0 when w ∈ B(z0; r) ∩ )G, then there is a subharmonic peak function  
on G corresponding to z0.To see how to construct the global peak function from the local peak function� , first shrink to
the disk B(z0; r∕2). The hypotheses imply that the function � has a strictly negative upper bound
on G ∩ )B(z0; r∕2). Choose a positive number C so large that C ⋅ � < −1 on G ∩ )B(z0; r∕2).Define  as follows.

 (z) =

{

−1, if z ∈ G ⧵ B(z0; r∕2),
max{−1, C�(z)}, if z ∈ G ∩ B(z0, r∕2).

Evidently  is negative in G and has limit equal to 0 at z0 (because � has limit 0). Is the
function subharmonic? Certainly is subharmonic on the open setG⧵B(z0; r∕2), where has
the constant value −1. And  is subharmonic on the open setG∩B(z0; r∕2), since the pointwisemaximum of two subharmonic functions is subharmonic. At every point of G ∩ )B(z0; r∕2),the function  attains a weak local minimum, hence automatically satisfies the small-circle sub-
mean-value property. So the constructed function  is indeed subharmonic on G. Moreover,
lim supz→w  (z) < 0whenw ∈ B(z0; r)∩)G because � has this property, and lim supz→w  (z) =
−1 if w ∈ ()G) ⧵ B(z0; r∕2). Thus  is the required global subharmonic peak function.

7.6.4 Bouligand

The definition in § 7.4 says that a subharmonic peak function corresponding to a boundary point z0should have three properties: (i) the values of the function are strictly negative inside the region;
(ii) the limit of the function at the boundary point z0 should be zero; and (iii) the upper limit of
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the function should be strictly negative at all other boundary points. Such a function might be
called more precisely a “strict” peak function.

Since the function is supposed to be negative inside the region, the upper limit at the boundary
is certainly less than or equal to zero. Dropping property (iii) allows the function to have limit zero
at some boundary points other than z0. A function satisfying merely properties (i) and (ii) might
be called a “weak” peak function. A technical refinement in the theory of the Dirichlet problem is
that the existence of a weak subharmonic peak function (or even a local weak subharmonic peak
function) actually implies the existence of a strict subharmonic peak function. This nontrivial
statement (not proved here) can be established through an argument due to G. Bouligand.8

7.7 Construction of peak functions

When do subharmonic peak functions exist? Examples in the homework assignment reveal that
there cannot be a subharmonic peak function at the center of a punctured disk.

But subharmonic peak functions do exist at reasonable boundary points. The construction is
easy at points where there is a supporting line, straightforward at points that are accessible from
the exterior by a line segment, and difficult for boundary points about which all that is known is
that the point is not a singleton boundary component.
Example. If G is a convex domain, in the sense that at each boundary point there is a supporting
line that intersects the (open) domain at no other point, then there is a harmonic peak function.
Indeed, a translation puts the boundary point at the origin, and a rotation makes the imaginary
axis the supporting line, with the domain lying in the right-hand half-plane. If the domain is
strongly convex (no boundary point besides the origin lies on the imaginary axis), then −Re z
is a harmonic peak function (hence a subharmonic peak function). If the domain is only weakly
convex, then −Re√z is a harmonic peak function.
Example. Suppose z0 is a boundary point of a domainwith the property that there is a line segment
lying in the complement of the domain with one endpoint at z0. (Part or all of the line segment
is allowed to lie in the boundary of the domain.) Then there is a peak function at z0.In particular, a domain bounded by a finite number of smooth curves admits peak functions at
all boundary points. The boundary curves can even have cusps. Moreover, the region can have
some straight slits.

To construct the peak function, let z1 be a second point on the indicated line segment. Use the
linear fractional transformation (z− z0)∕(z− z1) to send z0 to 0 and z1 to∞, and make a rotation
to ensure that the line segment maps to the negative part of the real axis. If z0 is the only point
of the original line segment that lies on the boundary of the region, then use√z to map into the
right-hand half-plane, and take the negative of the real part of the variable as the peak function
(as in the preceding example). If the original line segment touches the boundary of the region at
more than one point, then use a fourth root instead of a square root in this construction.

8Sur le problème de Dirichlet, Annales de la Société Polonaise de Mathématique 4 (1926) 59–112.
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The goal now is to establish the much more general statement that if z0 is a boundary point
of G, and the connected component K of the complement of G containing z0 contains at leastone other point, then there is a subharmonic peak function at z0.(Notice that singleton boundary components can arise as punctures in the domain but also in
other ways. For instance, consider the unit disk with a slit along the interval [2−n, 2−n + 4−n] of the
real axis for each natural number n and with the origin removed too. The origin is a nonisolated
boundary point that also is a singleton connected component of the boundary.)

To construct the peak function, first make a linear fractional transformation to put the point z0at 0 and a second point of K at ∞. The transformation amounts to a holomorphic change of
coordinates, so there is no harm in continuing to use the letters G and K to represent the image
of the domain and the image of the boundary component.

In the transformed picture, the complement ℂ ⧵K is a simply connected region containing G,
so there is a holomorphic branch of log(z) onℂ⧵K that can be restricted toG. On the intersection
of G with the unit disk, the real part of log(z) is a negative harmonic function. On the same open
setG∩B(0; 1), the real part of 1∕ log(z) is a negative harmonic function, and Re{1∕ log(z)}→ 0
when z→ 0.

Accordingly, the real part of 1∕ log(z) is a weak local harmonic peak function. The discussion
in § 7.6.3 shows that the existence of a local peak function implies the existence of a global peak
function. A technical complication arises here, because the imaginary part of log(z) could be
unbounded if G has a spiral structure. Therefore the real part of 1∕ log(z) is not necessarily a
strict local peak function. But Bouligand’s lemma mentioned in § 7.6.4 implies that the existence
of a weak local peak function suffices.

7.8 Wiener’s criterion for regularity

A necessary and sufficient condition for a boundary point of a region to be regular for the Dirichlet
problem was found in 1924 by Norbert Wiener. The details are beyond the scope of this course,
but here is the statement.

A relevant new concept is the logarithmic capacity of a compact subset of ℂ. The notion
arises from physics. If a unit charge is put on a piece of metal, then the charge settles into some
equilibrium position of minimum energy. In mathematical terms, the conductor is modeled by
a compact set K , the charge distribution is modeled by a probability measure � on K , and the
associated energy is

∬ log 1
|z −w|

d�(z) d�(w).

Rather than worry about whether there actually is a measure on the setK that achieves the min-
imum, consider the infimum I of the integrals over all probability measures on K . The integral
might be divergent, and the standard procedure is to consider the related quantity e−I , which is
necessarily positive (if I is finite) or zero (if I is +∞). This quantity e−I is called the logarithmic
capacity of K .
If K is a single point, then the only available measure is a point mass, so I = +∞, and the
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capacity is 0. The logarithmic capacity of a line segment turns out to be one-quarter the length
of the segment. The logarithmic capacity of a disk is equal to the radius of the disk.

Wiener’s idea is to fix a positive parameter � less than 1 and to chop up a neighborhood of z0into annuli by considering the set
{ z ∈ )G ∶ �n+1 ≤ |z − z0| ≤ �n }.

Let cn denote the logarithmic capacity of this compact set. The theorem is that z0 is a regular
point for the Dirichlet problem if and only if the infinite series

∑

n

n
log(1∕cn)

diverges.

(If some cn equals 0, then interpret the whole fraction as 0.)Sanity check: If z0 is a puncture in G, then all of the indicated sets are empty, so the series is a
convergent series 0 + 0 +⋯, and z0 is irregular. If the boundary of G near z0 is a smooth curve,
then cn is comparable to �n, so the series diverges by comparison with ∑n 1, and z0 is a regularpoint.

An interesting example is the unit disk with a Cantor set removed from the real axis. The
Cantor set is totally disconnected (that is, the only connected subsets are singletons), but no point
of the Cantor set is isolated. Wiener’s criterion can be used to show that every point of the Cantor
set is a regular point for the Dirichlet problem.

8 The range of holomorphic functions

8.1 Bloch’s theorem

If f is a nonconstant holomorphic function defined on the unit disk, what can be said about the
size of the range of f? Not much, for by the Riemann mapping theorem, the range can be an
arbitrary simply connected proper subdomain of ℂ. When f is not injective, the range can even
be all of ℂ (for instance, use a linear fractional transformation to map to the half-plane where
Re z > −1, and then compose with the squaring function). And the scaling mapping that sends z
to z∕n for a large natural number n shows that the range can be a disk of tiny radius.

To rule out such rescaling, suppose that the derivative of the function at the origin has absolute
value equal to 1. This normalization prevents shrinking the range in the obvious way, but could
you perhaps make the range small in a subtle way? The surprise is that the normalization of the
derivative at a single point constrains the range to be somewhere fat.
Theorem (André Bloch, 1924). There is a positive constant � such that if f is a holomorphic
function defined on the unit disk, and |f ′(0)| = 1, then the range of f contains a (schlicht) disk
of radius at least �.

The point is that � is independent of f . A schlicht disk in the range of f means a disk that
is the biholomorphic image under f of some open set. In other words, a schlicht disk is a disk
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on which a branch of f−1 is well defined. The range might contain non-schlicht disks of radius
greater than � if the image wraps around and covers some points more than once. The theorem
says that if the derivative at the origin is normalized to magnitude 1, then there is some open
subset of the unit disk that f maps one-to-one onto some disk of radius at least �.

For applications, a precise value for � is not needed: what is important is that some such
constant exists. The proof below shows that radius 1∕25 works (but is not optimal).

Considerable effort has been devoted to seeking the supremum of the values of � for which the
conclusion of the theorem holds. This unknown cutoff value is called Bloch’s constant. Lars V.
Ahlfors (1907–1996), recipient of the first Fields Medal, published an influential paper in 1938
that generalizes the Schwarz lemma;9 an application at the end of the article yields the value
1
4

√

3 (approximately 0.433) as a lower bound for Bloch’s constant. There was no quantitative
improvement for half a century. In his 1988 thesis, Mario Bonk was able to increase the lower
bound to 10−14+ 1

4

√

3, the point being that this value is a concrete number strictly larger than the
bound of Ahlfors.10 In 1937, Ahlfors and H. Grunsky had given an example11 of a holomorphic
function that constrains Bloch’s constant to be no greater than

√

√

3 − 1
2

⋅
Γ(1∕3)Γ(11∕12)

Γ(1∕4)

(approximately 0.472), where Γ is the standard Gamma function that interpolates the values of
the factorial function. This upper bound is conjectured to be the precise value of Bloch’s constant,
but the problem remains open.

A curious bit of history12 is that Bloch (1893–1948) was confined to a psychiatric hospital after
murdering three family members in 1917. (The circumstances are murky; perhaps Bloch suffered
from post-traumatic stress syndrome resulting from his war service.) He proved his theoremwhile
institutionalized.
Proof of Bloch’s theorem. To get started, suppose that f is holomorphic in a neighborhood of
the closed disk. (This special assumption will be removed at the end of the proof.) Under this
assumption, both f and f ′ are bounded functions in the disk.

If' is an automorphism of the unit disk, then f and f◦' have the same range, but the composite
function f◦' is not normalized at the origin. Explicit computation shows that if c = '(0),
then |(f◦')′(0)| = |f ′(c)|(1 − |c|2). The right-hand side tends to 0 when |c| → 1 (under the
assumption from the first paragraph that f ′ is bounded), so there is some point c inside the disk
for which |f ′(c)|(1 − |c|2) is maximized. That maximal value of |(f◦')′(0)| is no smaller than 1
(which is the particular value corresponding to c equal to 0).

9An extension of Schwarz’s lemma, Transactions of the American Mathematical Society 43 (1938), no. 3, 359–364.
10Mario Bonk, On Bloch’s constant, Proceedings of the AmericanMathematical Society 110 (1990), no. 4, 889–894.
11Über die Blochsche Konstante, Mathematische Zeitschrift 42 (1937), no. 1, 671–673.
12Douglas M. Campbell, Beauty and the beast: The strange case of Andre Bloch, The Mathematical Intelligencer 7

(1985), no. 4, 36–38.

64

http://www.jstor.org/stable/1990065
http://www.jstor.org/stable/2047734
https://doi.org/10.1007/BF01160101
https://doi.org/10.1007/BF03024484


Let g denote f◦' for an automorphism ' (not necessarily unique) that realizes the maximum.
If b is an arbitary nonzero point in the unit disk, and'b is the disk automorphism that interchanges
0 and b, then |(g◦'b)′(0)| = |g′(b)|(1 − |b|2). Since g is obtained by composing f with a disk
automorphism, so is g◦'b, and the maximality of g implies that |g′(b)|(1 − |b|2) ≤ |g′(0)|.
Equality holds in this inequality when b = 0.

Now let ℎ(z) denote {g(z) − g(0)}∕g′(0). The reason for defining ℎ this way is that ℎ(0) = 0
and ℎ′(0) = 1. If the range of ℎ can be shown to contain a schlicht disk of radius 1∕25, then the
range of g will contain a schlicht disk of radius |g′(0)|∕25. Since |g′(0)| ≥ 1, the range of f will
contain a schlicht disk of radius at least 1∕25.

The lower bound on |g′(0)| implies that if |z|2 ≤ 1∕2, then
|ℎ′(z)| =

|g′(z)|
|g′(0)|

≤ 1
1 − |z|2

≤ 1
1 − 1

2

= 2.

Evidently ℎ(z) = ℎ(z) − ℎ(0) = ∫

1

0

d
dt
ℎ(tz) dt. If |z| ≤ 1∕2, then |z|2 ≤ 1∕4, and

|ℎ(z)| ≤
|

|

|

|

∫

1

0
zℎ′(tz) dt

|

|

|

|

≤ |z|∫

1

0
|ℎ′(tz)| dt ≤ 1

2
⋅ 2 = 1.

Cauchy’s estimate for derivatives, applied on the disk of radius 1∕2, implies that the nthMaclaurin
coefficient of ℎ has modulus no greater than 2n. So if |z| ≤ 1∕8, then

|ℎ(z) − z| ≤
∞
∑

n=2
2n|z|n =

(2|z|)2

1 − 2|z|
≤

(

1
4

)2

1 − 1
4

= 1
12
.

If w is a point whose modulus is less than 1∕24, and |z| = 1∕8, then the preceding inequality
implies that |(ℎ(z) − w) − (z − w)| ≤ 1∕12 < |z − w|. By Rouché’s theorem, there is exactly
one point inside the disk of radius 1∕8 that ℎ maps to w. In other words, the range of ℎ contains
a schlicht disk of radius 1∕24 centered at the origin. Consequently, the range of f contains a
schlicht disk of radius at least 1∕24 centered at g(0).
The preceding analysis assumes that f is holomorphic in a neighborhood of the closed disk. If

instead f is holomorphic only on the open disk, then consider the function sending z to r−1f (rz)
when r is a real number less than 1 and greater than 24∕25. This function is normalized at the
origin and is holomorphic in a neighborhood of the closed disk, so the range contains a schlicht
disk of radius 1∕24. Therefore the range of the function sending z to f (rz) contains a schlicht
disk of radius 1∕25. Equivalently, the restriction of f to the disk of radius r maps some open set
biholomorphically onto a disk of radius 1∕25. Hence the original function f does so too.

8.2 Schottky’s theorem

The theorem is named for the German mathematician Friedrich Hermann Schottky (1851–1935).
The theorem dates from the first decade of the twentieth century. Subsequently, many authors
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found new proofs and refinements. The 1938 paper of Ahlfors cited above proves a strong version
of the theorem. The proof given below deduces Schottky’s theorem from Bloch’s theorem.
Theorem (Schottky’s theorem). There is a function ' of two real variables, increasing with
respect to each variable, such that if f is a holomorphic function in the unit disk that takes
neither of the values 0 and 1, then |f (z)| ≤ '(|z|, |f (0)|) for every point z in the disk.

The main point is that ' is a universal function, independent of f . In particular, if |f (0)| is
bounded above by some value s, and z lies in the disk of radius r (where r is less than 1), then
max

|z|≤r |f (z)| ≤ '(r, s). The proof will actually produce an explicit formula for '.
Corollary (Montel’s theorem). The family of holomorphic functions in the unit disk whose range
omits the values 0 and 1 is a normal family in the generalized sense that every sequence of func-
tions in the family either has a subsequence converging uniformly on compact sets to a holomor-
phic function or has a subsequence converging uniformly on compact sets to the constant∞.

Proof of Montel’s theorem. Suppose {fn} is a sequence of holomorphic functions mapping the
unit disk intoℂ⧵{0, 1}, the twice-punctured plane. First suppose there are infinitely many values
of n for which |fn(0)| ≤ 1. Schottky’s theorem implies that the corresponding family of functions
is locally bounded: on the compact set where |z| ≤ r, the functions have absolute value bounded
above by '(r, 1), a bound that is independent of the holomorphic function. The easy theorem of
Montel from § 2.3 implies that there is a normally convergent subsequence.

On the other hand, if there are only finitely many such values of n, then there are infinitely
many values of n for which |1∕fn(0)| < 1. Again by Schottky’s theorem, there is a subsequence
{1∕fnk} that converges uniformly on compact sets to a holomorphic function. By Hurwitz’s
theorem from § 2.7, that limit function is either nowhere zero or identically zero. If the limit is
identically 0, then the sequence {fnk} converges normally to∞. Otherwise, the sequence {fnk}converges normally to a holomorphic function.

Normality is a local property, and there is nothing special about the particular disk B(0; 1).
Thus Montel’s theorem immediately generalizes to say that if G is an arbitrary open set in ℂ,
then the family of holomorphic functions mapping G into ℂ ⧵ {0, 1} is a normal family in the
generalized sense.
Proof of Schottky’s theorem. Suppose that f is holomorphic in the unit disk, and the range of f
omits the values 0 and 1. The plan is to cook up a new function whose value at 0 is controlled by
|f (0)| and whose range omits a lattice. By Bloch’s theorem, that information will give control on
the derivative, hence control on the function by integrating. Bloch’s theorem from the preceding
section implies that there is a constant � (the value 1∕25 will do) such that if f is holomorphic in
a disk B(c;R), then the range of f contains a (schlicht) disk of radius at least �R|f ′(c)|.
Observe that if g is a holomorphic function defined on a simply connected region and omit-

ting the values 1 and −1, then g2 − 1 is never equal to 0, so a holomorphic branch of √g2 − 1
can be defined on the region. And g + √

g2 − 1 is never equal to 0 (since g2 ≠ g2 − 1), so
a holomorphic branch of log(g + √

g2 − 1 ) can be defined. A routine calculation shows that
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cos i log(g +
√

g2 − 1 ) = g. Thus a holomorphic function omitting the values 1 and −1 on a
simply connected region can be written as the cosine of another holomorphic function on the
region.

If f omits the values 0 and 1, then 2f −1 omits the values 1 and −1, so 2f −1 = cos(�f1) forsome holomorphic function f1. The function f1 is not unique, for any integer multiple of 2 can
be added to f1. Hence f1 can be chosen to have the property that −1 ≤ Re f1(0) ≤ 1. Moreover,
the imaginary part of f1(0) can be controlled by |f (0)|. Indeed, |y| ≤ | sinh(y)| ≤ | cos(x+ iy)|,
so

�| Im f1(0)| ≤ | cos(�f1(0))| ≤ 2|f (0)| + 1.
Accordingly,

|f1(0)| ≤ |Re f1(0)| + | Im f1(0)| ≤ 1 +
2
�
|f (0)| + 1

�
< 2 + |f (0)|.

(The goal here is not to get an optimal bound but rather to get a simple and explicit bound.)
Since cos(�f1) omits the values 1 and−1, the function f1 omits all integer values. In particular,

the function f1 omits the values 1 and−1, so there is a function f2 such that f1 = cos(i�f2). Since
f2 is determined only up to addition of an integer multiple of 2i, the function f2 can be chosen tohave the property that −1 ≤ Im f2(0) ≤ 1. Reasoning as before shows that

�|Re f2(0)| ≤ | cos(i�f2(0))| = |f1(0)| < 2 + |f (0)|.

Therefore
|f2(0)| ≤ 1 +

2
�
+ 1
�
|f (0)| < 2 + |f (0)|.

The function f2 omits a whole lattice of values. Indeed, for an arbitary branch of the logarithm,
the cosine of ±i log(k +

√

k2 − 1 ) is equal to k, so the function f2 omits all possible values of
±�−1 log(k +

√

k2 − 1 ) for every natural number k. The spacing between omitted values in the
imaginary direction is 2. The spacing between omitted values in the real direction is variable and
decreases as k increases. The maximal spacing in the real direction is therefore no more than
�−1(log(2 +

√

3 ) − log 1), which is less than �−1 log 4. The radius of the largest disk that misses
all lattice points is less than half the diagonal spacing, hence less than half the sum 2+ �−1 log 4,
hence less than 2.
If |z| ≤ r < 1, then f2 is holomorphic on a disk centered at z of radius at least 1 − r. By

Bloch’s theorem, there is a disk in the range of f2 of radius at least �(1 − r)|f ′2(z)|. Hence
|f ′2(z)| < 2�−1(1 − r)−1. Integrating along a line segment from 0 to z shows that |f2(z)| ≤
|f2(0)| + 2�−1r(1 − r)−1 when |z| ≤ r.

This inequality induces an estimate on |f (z)|. Since | cos z| ≤ cosh |z|, taking � equal to 1∕25
shows that if |f (0)| ≤ s and |z| ≤ r, then

|f (z)| ≤ 1
2
+ 1

2
| cos(� cos(�if2(z)))|

≤ 1
2
+ 1

2
cosh(� cosh(�(2 + |f (0)| + 2�−1r(1 − r)−1)))

< cosh(� cosh(�(2 + s + 50r(1 − r)−1))).
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Modest improvements in the upper bound are available through essentially the same method.
The main point is that there is an upper bound depending only on the upper bound for |f (0)| and
the distance of |z| from the boundary of the unit disk.

8.3 Proofs of Picard’s theorems

Picard’s great theorem says that in every neighborhood of an essential singularity, a holomor-
phic function takes every complex value with one possible exception. Repeatedly shrinking the
neighborhood shows that every value except possibly one is actually taken infinitely many times.

To prove the great theorem, suppose without loss of generality that f has an essential singular-
ity at the origin. Seeking a contradiction, suppose there are two distinct complex numbers a and b
that f takes only finitely many times. Shrinking the neighborhood reduces to the case that these
two values are not taken at all. And considering the function (f − a)∕(b − a) reduces to the case
that the omitted values are 0 and 1. Dilating the independent variable shows that the punctured
neighborhood can be taken to be the punctured unit disk.

For each natural number n, define fn to be the function sending z to f (z∕n), and consider the
family {fn} in the punctured disk. By Montel’s fundamental normality criterion, this family is
normal in the extended sense. There are two cases.

First suppose there is a subsequence {fnk} converging normally to a holomorphic function.
The circle of radius 1∕2 is a compact set, so there is some bound M such that |fnk(z)| ≤ M
for every k when |z| = 1∕2. Unwinding the definition of fn shows that there is a sequence of
annuli with outer radius 1∕2 and inner radius approaching 0 such that |f | is bounded byM on the
boundary of each annulus, hence on the whole annulus (by the maximum principle). Therefore
|f | is bounded byM on the union of the annuli, which is the whole punctured disk of radius 1∕2.
By Riemann’s theorem on removable singularities, the singularity at the origin is removable,
contrary to the hypothesis.

Next suppose there is a subsequence converging normally to ∞. The corresponding subse-
quence of reciprocals converges normally to 0. By the preceding argument, the reciprocal of the
original function has a removable singularity, and the singularity is removed by setting the value
at the origin to be 0. Hence the original function has a pole, again contrary to the hypothesis.
Thus the assumption that f omits two values contradicts the hypothesis that the singularity is

essential. The proof of Picard’s great theorem is complete.
Picard’s little theorem says that a nonpolynomial entire function takes every complex value,

with one possible exception, infinitely many times. This result is a corollary of the great theorem
because a nonpolynomial entire function has an essential singularity at infinity.
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