# Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

#### **Taylor expansion**

If  $\rho$  is a real-valued class  $C^2$  function, then

$$\rho(z) = \rho(0) + 2\operatorname{Re}\sum_{j=1}^{n} \frac{\partial \rho}{\partial z_{j}}(0)z_{j} + \operatorname{Re}\sum_{j,k=1}^{n} \frac{\partial^{2}\rho}{\partial z_{j}\partial z_{k}}(0)z_{j}z_{k}$$
$$+ \sum_{j,k=1}^{n} \frac{\partial^{2}\rho}{\partial z_{j}\partial \overline{z}_{k}}(0)z_{j}\overline{z}_{k} + o(|z|^{2}).$$

Suppose  $\rho$  is a defining function for a domain, and 0 is a boundary point. Choose coordinates such that Re  $z_n$  is normal at 0. The Taylor expansion reduces (possibly after rescaling) to

$$\rho(z) = \operatorname{Re} z_n + \operatorname{Re} \sum_{j,k=1}^n \frac{\partial^2 \rho}{\partial z_j \partial z_k}(0) z_j z_k + \sum_{j,k=1}^n \frac{\partial^2 \rho}{\partial z_j \partial \overline{z}_k}(0) z_j \overline{z}_k + o(|z|^2).$$

Math 650-600

April 12, 2005 — slide #2

#### Consequences of a negative eigenvalue

Now  $z_n \mapsto z_n + \sum_{j,k=1}^n \frac{\partial^2 \rho}{\partial z_j \partial z_k}(0) z_j z_k$  is a holomorphic change of variables that further reduces the Taylor expansion to

$$\rho(z) = \operatorname{Re} z_n + \sum_{j,k=1}^n \frac{\partial^2 \rho}{\partial z_j \partial \overline{z}_k}(0) z_j \overline{z}_k + o(|z|^2).$$

Suppose the Levi form at 0 is negative in some complex tangential direction, say  $z_1$ . Then  $\rho(\lambda, 0, ..., 0) < 0$  when  $\lambda$  is a non-zero complex number of modulus less than some  $\epsilon$ .

Thus the analytic disc {  $(\lambda, 0, ..., 0) : |\lambda| < \epsilon$  } is contained in  $\Omega$  except for the center point, which lies on the boundary. Translating the disc in the direction of decreasing Re  $z_n$  moves the disc inside  $\Omega$ , so the continuity principle is violated.

Translating the disc in the direction of increasing  $\text{Re } z_n$  gives a way to extend all holomorphic functions across the boundary by using the Cauchy integral.

Math 650-600

April 12, 2005 — slide #3

## **Exercise on Reinhardt domains**

For a complete Reinhardt domain in  $\mathbb{C}^2$  with smooth boundary, show that the Levi form is  $\geq 0$  if and only if the domain is logarithmically convex.

This solves a special case of the Levi problem.

The next exercise solves another special case of the Levi problem.

Math 650-600

April 12, 2005 — slide #4

# **Exercise on tube domains**

An unbounded domain  $\Omega$  in  $\mathbb{C}^n$  is called a tube domain with base G in  $\mathbb{R}^n$  if  $\Omega = \{x + iy \in \mathbb{C}^n : x \in G \text{ and } y \in \mathbb{R}^n \}.$ 

**Exercise.** Show that a tube domain in  $\mathbb{C}^n$  is pseudoconvex if and only if the base *G* in  $\mathbb{R}^n$  is convex.

References: Pierre Lelong, La convexité et les fonctions analytiques de plusieurs variables complexes, *Journal de Mathématiques Pures et Appliquées* (9) **31** (1952) 191–219; H. J. Bremermann, Complex convexity, *Transactions of the American Mathematical Society* **82** (1956) 17–51.



born 14 March 1912

Hans-Joachim Bremermann



1926–1996

Math 650-600

April 12, 2005 — slide #5

# **Complete Hartogs domains**

A complete Hartogs domain  $\Omega$  in  $\mathbb{C}^{n+1}$  with base *G* in  $\mathbb{C}^n$  is defined by  $|z_{n+1}| < e^{-u(z_1,...,z_n)}$  for  $(z_1,...,z_n) \in G$ , where *u* is upper semi-continuous.

**Theorem.** A complete Hartogs domain is pseudoconvex if and only if (a) the base is pseudoconvex and (b) the function *u* is plurisubharmonic.

**Proof.** If  $\Omega$  is pseudoconvex, then there is a plurisubharmonic exhaustion function. Restrict the function to the base to get a plurisubharmonic exhaustion function on *G*. So (a) holds.

If c = (0, 0, ..., 0, 1), then  $-\log d_c(z_1, ..., z_n, 0) = u(z_1, ..., z_n)$ . From a previous proof, we know that pseudoconvexity of  $\Omega$  implies plurisubharmonicity of  $-\log d_c$ . So (b) holds.

The converse will be done next time.

Math 650-600

April 12, 2005 — slide #6