Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Complete Hartogs domains

Theorem. A complete Hartogs domain

 $\{z \in \mathbb{C}^{n+1} : |z_{n+1}| < e^{-u(z_1,...,z_n)}, (z_1,...,z_n) \in G \}$

is pseudoconvex if and only if (a) the base *G* is pseudoconvex and (b) the function *u* is plurisub-harmonic on *G*.

First part of the proof from last time. Suppose Ω is pseudoconvex.

Then the base (or any slice of Ω by a complex hyperplane) is pseudoconvex: restrict a plurisubharmonic exhaustion function to the slice.

A previous proof shows that $-\log d_c$ is plurisubharmonic for every unit vector c, and when c points in the z_{n+1} direction, $-\log d_c(z_1, \ldots, z_n, 0) = u(z_1, \ldots, z_n)$.

It remains to prove the converse direction of the theorem.

Math 650-600

April 14, 2005 — slide #2

Proof of the converse

If the base *G* in \mathbb{C}^n is pseudoconvex, then so is the product domain $G \times \mathbb{C}$ in \mathbb{C}^{n+1} . The domain Ω is cut out of the product domain by the inequality $\log |z_{n+1}| + u(z_1, \ldots, z_n) < 0$, and $v(z) := \log |z_{n+1}| + u(z_1, \ldots, z_n)$ is plurisubharmonic.

Lemma. If *D* is pseudoconvex and $\Omega = \{z \in D : v(z) < 0\}$, where *v* is plurisubharmonic in *D*, then Ω is pseudoconvex.

Proof. If $K \subset \subset \Omega$, then v has a negative supremum on K. If v is continuous, then the plurisubharmonic hull \widehat{K}_{Ω} stays away from the set where v = 0. Also $\widehat{K}_{\Omega} \subseteq \widehat{K}_{D} \subset \subset D$. So $\widehat{K}_{\Omega} \subset \subset \Omega$. Hence Ω is pseudoconvex.

If *v* is not continuous: by the preceding special case, $D_k := \{z \in D : -\log \operatorname{dist}(z, bD) + |z|^2 < k\}$ is pseudoconvex and $D_k \uparrow D$; now approximate *v* from above on D_k by smooth plurisubharmonic functions. As $k \to \infty$, we get an exhaustion of Ω from inside by pseudoconvex domains.

Math 650-600

Exercise on Reinhardt domains

For a complete Reinhardt domain in \mathbb{C}^2 with smooth boundary, show that the Levi form is ≥ 0 if and only if the domain is logarithmically convex.

This solves a special case of the Levi problem.

Held over for next time.

Math 650-600

April 14, 2005 — slide #4

Exercise on tube domains

An unbounded domain Ω in \mathbb{C}^n is called a tube domain with base G in \mathbb{R}^n if $\Omega = \{x + iy \in \mathbb{C}^n : x \in G \text{ and } y \in \mathbb{R}^n \}.$

Exercise. Show that a tube domain in \mathbb{C}^n is pseudoconvex if and only if the base *G* in \mathbb{R}^n is convex.

Held over for next time.

Math 650-600

April 14, 2005 — slide #5

Solvability of the $\overline{\partial}$ -equation

Theorem. Suppose Ω is a pseudoconvex domain in \mathbb{C}^n . Then for every $\overline{\partial}$ -closed (0,1)-form f with coefficients of class $C^{\infty}(\Omega)$, there exists a function u of class $C^{\infty}(\Omega)$ such that $\overline{\partial}u = f$.

We will prove the theorem using Hörmander's L^2 method, but first we will apply the theorem to solve the Levi problem.

equations.

born 24 Jan 1931

Math 650-600

Hörmander won the 1962 Fields Medal for fun-

damental work on linear partial differential

April 14, 2005 — slide #6

Extension from slices

Theorem. Suppose Ω is a pseudoconvex domain in \mathbb{C}^n , and let ω be the intersection of Ω with a complex hyperplane. For every holomorphic function f on ω (in \mathbb{C}^{n-1}), there is a holomorphic function F on Ω such that $F|_{\omega} = f$.

Proof. We may assume that the slice is given by $z_n = 0$. The set ω is relatively closed in Ω , and so is the set $\Omega \setminus (\omega \times \mathbb{C})$. These sets are disjoint, so there is a class C^{∞} function φ on Ω such that $\varphi \equiv 1$ on ω and $\varphi \equiv 0$ on $\Omega \setminus (\omega \times \mathbb{C})$. Then φf makes sense as a class C^{∞} function on Ω .

We seek *F* in the form $\varphi f - z_n v$, with *v* to be determined. To make *F* holomorphic, we need to have $\overline{\partial}v = \frac{1}{z_n} \overline{\partial}(\varphi f)$. By construction, the right-hand side is class C^{∞} on Ω and $\overline{\partial}$ -closed. By the theorem on solvability of the $\overline{\partial}$ -equation on pseudoconvex domains, the required function *v* exists.

Math 650-600