Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Exercise on Reinhardt domains

For a complete Reinhardt domain in \mathbb{C}^2 with smooth boundary, show that the Levi form is ≥ 0 if and only if the domain is logarithmically convex.

This solves a special case of the Levi problem.

Math 650-600

April 19, 2005 — slide #2

Exercise on tube domains

An unbounded domain Ω in \mathbb{C}^n is called a tube domain with base G in \mathbb{R}^n if $\Omega = \{x + iy \in \mathbb{C}^n : x \in G \text{ and } y \in \mathbb{R}^n \}$.

Exercise. Show that a tube domain in \mathbb{C}^n is pseudoconvex if and only if the base *G* in \mathbb{R}^n is convex.

Math 650-600

April 19, 2005 — slide #3

Recap from last time

Theorem. Suppose Ω is a pseudoconvex domain in \mathbb{C}^n . Then for every $\overline{\partial}$ -closed (0,1)-form f with coefficients of class $C^{\infty}(\Omega)$, there exists a function u of class $C^{\infty}(\Omega)$ such that $\overline{\partial}u = f$.

Extension theorem. Suppose Ω is a pseudoconvex domain in \mathbb{C}^n , and let ω be the intersection of Ω with a complex hyperplane. For every holomorphic function f on ω (in \mathbb{C}^{n-1}), there is a holomorphic function F on Ω such that $F|_{\omega} = f$.

Idea of proof: Extend *f* smoothly. Then solve a $\overline{\partial}$ -problem to adjust the extension, making it holomorphic.

Math 650-600

April 19, 2005 — slide #4

Solution of the Levi problem

Theorem. Every pseudoconvex domain in \mathbb{C}^n is a domain of holomorphy.

Proof by induction on the dimension *n***.** The basis step (n = 1) is easy: every domain in \mathbb{C}^1 is a domain of holomorphy. Suppose the result is know for dimensions less than *n*, and let Ω be a pseudoconvex domain in \mathbb{C}^n .

It suffices to show that whenever an open ball contained in Ω has a boundary point *p* lying in $b\Omega$, there is a holomorphic function on Ω that is unbounded on the radius terminating at *p*.

Fix such a ball and point p, and slice Ω with a complex hyperplane containing the radius terminating at p. The slice is pseudoconvex, so by the induction hypothesis, there is a holomorphic function f on the slice that is unbounded on the radius. Extend f to a holomorphic function Fon Ω by the slice extension theorem.

Math 650-600

April 19, 2005 — slide #5