Math 650-600: Several Complex Variables

Harold P. Boas

boas@tamu.edu

Exercise on Reinhardt domains

For a complete Reinhardt domain in C^{2} with smooth boundary, show that the Levi form is ≥ 0 if and only if the domain is logarithmically convex.

This solves a special case of the Levi problem.

Exercise on tube domains

An unbounded domain Ω in \mathbb{C}^{n} is called a tube domain with base G in \mathbb{R}^{n} if $\Omega=\{x+i y \in$ $\mathbb{C}^{n}: x \in G$ and $\left.y \in \mathbb{R}^{n}\right\}$.

Exercise. Show that a tube domain in \mathbb{C}^{n} is pseudoconvex if and only if the base G in \mathbb{R}^{n} is convex.

Recap from last time

Theorem. Suppose Ω is a pseudoconvex domain in \mathbb{C}^{n}. Then for every $\bar{\partial}$-closed (0,1)-form f with coefficients of class $C^{\infty}(\Omega)$, there exists a function u of class $C^{\infty}(\Omega)$ such that $\bar{\partial} u=f$.

Extension theorem. Suppose Ω is a pseudoconvex domain in \mathbb{C}^{n}, and let ω be the intersection of Ω with a complex hyperplane. For every holomorphic function f on ω (in \mathbb{C}^{n-1}), there is a holomorphic function F on Ω such that $\left.F\right|_{\omega}=f$.

Idea of proof: Extend f smoothly. Then solve a $\bar{\partial}$-problem to adjust the extension, making it holomorphic.

Solution of the Levi problem

Theorem. Every pseudoconvex domain in \mathbb{C}^{n} is a domain of holomorphy.
Proof by induction on the dimension n. The basis step $(n=1)$ is easy: every domain in \mathbb{C}^{1} is a domain of holomorphy. Suppose the result is know for dimensions less than n, and let Ω be a pseudoconvex domain in \mathbb{C}^{n}.
It suffices to show that whenever an open ball contained in Ω has a boundary point p lying in $b \Omega$, there is a holomorphic function on Ω that is unbounded on the radius terminating at p.
Fix such a ball and point p, and slice Ω with a complex hyperplane containing the radius terminating at p. The slice is pseudoconvex, so by the induction hypothesis, there is a holomorphic function f on the slice that is unbounded on the radius. Extend f to a holomorphic function F on Ω by the slice extension theorem.

