Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Solvability of the $\overline{\partial}$ problem

Theorem. If Ω is a pseudoconvex domain in \mathbb{C}^n , then for every $\overline{\partial}$ -closed (0,1)-form f with coefficients of class $C^{\infty}(\Omega)$, there exists a function u of class $C^{\infty}(\Omega)$ such that $\overline{\partial}u = f$.

We follow Hörmander's L^2 method, a development motivated by ideas of C. B. Morrey, J. J. Kohn, and D. C. Spencer.

References:

- Lars Hörmander, L² estimates and existence theorems for the ∂ operator, Acta Mathematica 113 (1965), 89–152.
- Lars Hörmander, *An introduction to complex analysis in several variables*, third edition, North-Holland, Amsterdam, 1990, Chapter IV.
- Lars Hörmander, A history of existence theorems for the Cauchy-Riemann complex in *L*² spaces, *Journal of Geometric Analysis* **13** (2003), no. 2, 329–357.

Math 650-600

April 21, 2005 — slide #2

Hilbert space set-up for $\overline{\partial}$

We work in the Hilbert space $L^2(\Omega, \varphi)$ of functions (or forms) on Ω that are square-integrable with respect to a weight $e^{-\varphi}$. The exponent φ will be a special C^{∞} plurisubharmonic exhaustion function for Ω . The inner product $\langle f, g \rangle_{\varphi}$ on functions equals $\int_{\Omega} f(z)\overline{g(z)}e^{-\varphi(z)}$; for forms, add the inner products of the corresponding components.

The differential operator $\overline{\partial}$ acts on L^2 in the sense of distributions. The domain of $\overline{\partial}$ is all f for which $\overline{\partial}f$ is in L^2 . All smooth, compactly supported functions (or forms) are in the domain of $\overline{\partial}$, which is therefore dense in L^2 .

The operator $\overline{\partial}$ is a closed, densely defined (unbounded) operator. There is a closed, densely defined adjoint operator $\overline{\partial}^*$ such that $\langle \overline{\partial}f, g \rangle_{\varphi} = \langle f, \overline{\partial}^*g \rangle_{\varphi}$ for $f \in \text{Dom }\overline{\partial}$ and $g \in \text{Dom }\overline{\partial}^*$.

Math 650-600

The strategy

First we prove solvability of the $\overline{\partial}$ -equation in suitable weighted L^2 spaces.

Then we show regularity: namely, C^{∞} data $\Rightarrow C^{\infty}$ solution.

The first step (L^2 solvability) depends on the following.

Key estimate. If Ω is a pseudoconvex domain in \mathbb{C}^n , then there exist smooth weight functions φ_1 , φ_2 , and φ_3 such that for every (0, 1)-form f (that is, $f = \sum_{j=1}^n f_j d\overline{z}_j$) in the intersection of the domains of $\overline{\partial}$ and $\overline{\partial}^*$, we have

$$\|f\|_{\varphi_2} \le \|\overline{\partial}^* f\|_{\varphi_1} + \|\overline{\partial} f\|_{\varphi_3}.$$

Math 650-600

April 21, 2005 — slide #4

Key estimate \Rightarrow **solvability in** L^2

The key estimate implies in particular that if *f* is a $\overline{\partial}$ -closed (0,1)-form such that $f \in \text{Dom }\overline{\partial}^*$, then

$$\|f\|_{\varphi_2} \le \|\overline{\partial}^* f\|_{\varphi_1}.\tag{1}$$

Suppose $\overline{\partial}g = 0$; we seek *u* such that $\overline{\partial}u = g$.

The map $\overline{\partial}^* f \mapsto \langle f, g \rangle_{\varphi_2}$ is well-defined on $\overline{\partial}^* (\text{Dom }\overline{\partial}^* \cap \ker \overline{\partial})$ by (1), linear, and continuous in the topology of the space $L^2(\Omega, \varphi_1)$ because $|\langle f, g \rangle_{\varphi_2}| \leq ||g||_{\varphi_2} ||\overline{\partial}^* f||_{\varphi_1}$ by (1). This continuous linear functional extends to all of $L^2(\Omega, \varphi_1)$ by orthogonal projection, and by the Riesz representation theorem there is a function u such that $\langle f, g \rangle_{\varphi_2} = \langle \overline{\partial}^* f, u \rangle_{\varphi_1}$.

Therefore, by the definition of the adjoint, $\langle f, g \rangle_{\varphi_2} = \langle f, \overline{\partial}u \rangle_{\varphi_2}$ for all f in the domain of $\overline{\partial}^*$, which is dense, so $\overline{\partial}u = g$.

Math 650-600

April 21, 2005 — slide #5

Regularity of the solution

Suppose $\overline{\partial} u = f = \sum_{j=1}^{n} f_j d\overline{z}_j \in C^{\infty}(\Omega)$, that is, $\partial u / \partial \overline{z}_j \in C^{\infty}(\Omega)$ for j = 1, ..., n. We want to show that $u \in C^{\infty}(\Omega)$.

By Sobolev's lemma, it suffices to show that all partial derivatives of *u* of all orders are locally square-integrable. In other words, for an arbitrary smooth function ψ with compact support in Ω , we want to show finiteness of

$$\left\|\psi\frac{\partial^{|\alpha|+|\beta|}u}{\partial z^{\alpha}\partial \overline{z}^{\beta}}\right\|^{2} = \int_{\Omega}\psi(z)\frac{\partial^{|\alpha|+|\beta|}u}{\partial z^{\alpha}\partial \overline{z}^{\beta}}\,\overline{\psi(z)}\frac{\partial^{|\alpha|+|\beta|}u}{\partial z^{\alpha}\partial \overline{z}^{\beta}}.$$

Integrating by parts $2|\alpha|$ times eliminates the $\partial/\partial z$ derivatives of *u* in favor of $\partial/\partial \overline{z}$ derivatives of *u*, which are under control by hypothesis.

Math 650-600

April 21, 2005 — slide #6