Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Recap from last time

We reduced the solution of the $\bar{\partial}$ -equation on (0,1)-forms to the following.

Key estimate. If Ω is a pseudoconvex domain in \mathbb{C}^n , then there exist smooth weight functions φ_1 , φ_2 , and φ_3 such that when $f = \sum_{j=1}^n f_j d\overline{z}_j$ is in the intersection of the domains of $\overline{\partial}$ and $\overline{\partial}^*$, then

$$||f||_{\varphi_2} \le ||\overline{\partial}^* f||_{\varphi_1} + ||\overline{\partial} f||_{\varphi_3}.$$

To prove the key estimate, we need (a) to compute the terms on the right-hand side and (b) to choose suitable weight functions.

Math 650-600 April 26, 2005 — slide #2

Computation of the norm of $\bar{\partial} f$

A clever technical point: if the weight functions φ_1 , φ_2 , and φ_3 are chosen to grow suitably fast at $b\Omega$, then the C^{∞} functions with compact support in Ω will be dense in $Dom \overline{\partial} \cap Dom \overline{\partial}^*$. Assuming this density for now, we may compute in $C_0^{\infty}(\Omega)$.

If
$$f = \sum_{j=1}^{n} f_j d\overline{z}_j$$
, then $\overline{\partial} f = \sum_{j < k} \left(\frac{\partial f_j}{\partial \overline{z}_k} - \frac{\partial f_k}{\partial \overline{z}_j} \right) d\overline{z}_k \wedge d\overline{z}_j$, so $|\overline{\partial} f|^2 = \sum_{j < k} \left| \frac{\partial f_j}{\partial \overline{z}_k} - \frac{\partial f_k}{\partial \overline{z}_j} \right|^2 = \frac{1}{2} \sum_{j,k} \left| \frac{\partial f_j}{\partial \overline{z}_k} - \frac{\partial f_k}{\partial \overline{z}_j} \right|^2 = \sum_{j,k} \left(\left| \frac{\partial f_j}{\partial \overline{z}_k} \right|^2 - \frac{\partial f_j}{\partial \overline{z}_k} \frac{\overline{\partial f_k}}{\partial \overline{z}_j} \right)$. Therefore

$$\|\overline{\partial}f\|_{\varphi_3}^2 = \sum_{j,k} \int_{\Omega} \left(\left| \frac{\partial f_j}{\partial \overline{z}_k} \right|^2 - \frac{\partial f_j}{\partial \overline{z}_k} \, \overline{\frac{\partial f_k}{\partial \overline{z}_j}} \, \right) e^{-\varphi_3}$$

and we need to handle the term with the minus sign.

Math 650-600 April 26, 2005 — slide #3

Computation of $\overline{\partial}^*$

The choice of weight functions (to be made later) guarantees that $C_0^{\infty}(\Omega)$ is dense in Dom $\bar{\partial}$, so to compute $\bar{\partial}^*$ we may pair with a smooth, compactly supported function and integrate by parts without boundary terms.

$$\begin{split} &\langle \overline{\partial}^* f, g \rangle_{\varphi_1} = \langle f, \overline{\partial} g \rangle_{\varphi_2} = \sum_{j=1}^n \langle f_j, \frac{\partial g}{\partial \overline{z}_j} \rangle_{\varphi_2} = -\sum_{j=1}^n \langle e^{\varphi_1} \frac{\partial}{\partial z_j} (e^{-\varphi_2} f_j), g \rangle_{\varphi_1}. \\ &\text{So } \overline{\partial}^* f = -\sum_{j=1}^n e^{\varphi_1} \frac{\partial}{\partial z_j} (e^{-\varphi_2} f_j). \text{ Set } \delta_j f_j := e^{\varphi_3} \frac{\partial}{\partial z_j} (e^{-\varphi_3} f_j) \text{ and rewrite } \overline{\partial}^* f = -e^{\varphi_1 - \varphi_2} \sum_{j=1}^n \left(\delta_j f_j - f_j \frac{\partial}{\partial z_j} (\varphi_2 - \varphi_3) \right). \end{split}$$

We do not need three independent weight functions. It is convenient to use two independent functions $\varphi := \varphi_3$ and ψ satisfying $\varphi_3 - \varphi_2 = \psi = \varphi_2 - \varphi_1$. Then $\overline{\partial}^* f = -e^{-\psi} \sum_{j=1}^n \left(\delta_j f_j + f_j \frac{\partial \psi}{\partial z_j} \right)$.

Math 650-600 April 26, 2005 — slide #4

Approaching the key estimate

By the triangle inequality, $\|e^{-\psi}\sum_{j=1}^n \delta_j f_j\|_{\varphi_1} \leq \|\overline{\partial}^* f\|_{\varphi_1} + \|e^{-\psi}\sum_{j=1}^n f_j \frac{\partial \psi}{\partial z_j}\|_{\varphi_1}$. Since $2\psi + \varphi_1 = \varphi_3 = \varphi$, squaring both sides gives

$$\int_{\Omega} \left| \sum_{j=1}^{n} \delta_{j} f_{j} \right|^{2} e^{-\varphi} \leq 2 \|\overline{\partial}^{*} f\|_{\varphi_{1}}^{2} + 2 \int_{\Omega} |f|^{2} |\partial \psi|^{2} e^{-\varphi}.$$

Adding the previously computed term $\|\bar{\partial} f\|_{\varphi_3}^2$ yields

$$\sum_{j,k} \int_{\Omega} \left((\delta_j f_j) (\overline{\delta_k f_k}) - \frac{\partial f_j}{\partial \overline{z}_k} \frac{\overline{\partial f_k}}{\partial \overline{z}_j} \right) e^{-\varphi} \leq \|\overline{\partial} f\|_{\varphi_3}^2 + 2\|\overline{\partial}^* f\|_{\varphi_1}^2 + 2 \int_{\Omega} |f|^2 |\partial \psi|^2 e^{-\varphi}.$$

Because δ_j is adjoint to $-\partial/\partial \overline{z}_j$ on $C_0^{\infty}(\Omega)$, the left-hand side simplifies after two integrations by parts.

Math 650-600

April 26, 2005 — slide #5

The punch line

The commutator $\delta_j \frac{\partial}{\partial \overline{z}_k} - \frac{\partial}{\partial \overline{z}_k} \delta_j = \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k}$. Therefore

$$\int_{\Omega} \sum_{j,k} \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} f_j \overline{f_k} e^{-\varphi} \leq \|\overline{\partial} f\|_{\varphi_3}^2 + 2\|\overline{\partial}^* f\|_{\varphi_1}^2 + 2 \int_{\Omega} |f|^2 |\partial \psi|^2 e^{-\varphi}.$$

If we can choose φ sufficiently strongly plurisubharmonic that for every vector w in \mathbb{C}^n we have

$$\sum_{j,k} \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} w_j \overline{w}_k \ge 2|w|^2 |\partial \psi|^2 + 2|w|^2 e^{\psi}$$

then we will have the key estimate, and hence the solution of the $\bar{\partial}$ -equation on pseudoconvex domains.

Math 650-600 April 26, 2005 — slide #6