Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Final class meeting

Our last meeting will be on the afternoon of the redefined day, Tuesday 3 May, 3:15–4:30 in Milner 313.

Math 650-600

April 28, 2005 — slide #2

Recap from last time

Solving the $\overline{\partial}$ -equation in $C^{\infty}(\Omega)$ for (0,1)-forms on a pseudoconvex domain Ω reduces to constructing weight functions φ_1 , φ_2 , and φ_3 for which one has the key estimate

$$\|f\|_{\varphi_2} \le \|\overline{\partial}^* f\|_{\varphi_1} + \|\overline{\partial} f\|_{\varphi_3}$$

when $f = \sum_{j=1}^{n} f_j d\overline{z}_j$ is in Dom $\overline{\partial}^* \cap$ Dom $\overline{\partial}$.

By a clever choice of the weight functions, we reduce to proving the key estimate when f has compactly supported smooth coefficients, so we can integrate by parts without boundary terms.

We will construct two functions φ and ψ and set $\varphi_3 = \varphi$, $\varphi_2 = \varphi - \psi$, $\varphi_1 = \varphi - 2\psi$, which means that $\varphi_3 - \varphi_2 = \psi$ and $\varphi_2 - \varphi_1 = \psi$. The role of ψ is to guarantee density of $C_0^{\infty}(\Omega)$ in $\text{Dom }\overline{\partial}^* \cap \text{Dom }\overline{\partial}$, while φ exploits the pseudoconvexity of Ω .

Math 650-600

The calculation in progress

Explicit computation showed that

$$\sum_{j,k} \left(\langle \delta_j f_j, \delta_k f_k \rangle_{\varphi} - \langle \frac{\partial f_j}{\partial \bar{z}_k}, \frac{\partial f_k}{\partial \bar{z}_j} \rangle_{\varphi} \right) \leq \|\overline{\partial} f\|_{\varphi_3}^2 + 2\|\overline{\partial}^* f\|_{\varphi_1}^2 + 2\int_{\Omega} |f|^2 |\partial \psi|^2 e^{-\varphi},$$

where $\delta_j f_j = e^{\varphi} \frac{\partial}{\partial z_j} (e^{-\varphi} f_j)$. Since we may assume that *f* has compact support, two integrations by parts convert the left-hand side to

$$\sum_{j,k} \left\langle \left(\delta_j \frac{\partial}{\partial \overline{z}_k} - \frac{\partial}{\partial \overline{z}_k} \delta_j \right) f_j, f_k \right\rangle_{\varphi}$$

and we want to show that this term equals

$$\sum_{j,k} \left\langle \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} f_j, f_k \right\rangle_{\varphi}.$$

Math 650-600

April 28, 2005 — slide #4

Computation of the commutator term

For a smooth function u, the definition of the operator δ_j gives

$$\begin{split} & \left(\delta_{j}\frac{\partial}{\partial\overline{z}_{k}}-\frac{\partial}{\partial\overline{z}_{k}}\delta_{j}\right)u=e^{\varphi}\frac{\partial}{\partial z_{j}}\left(e^{-\varphi}\frac{\partial}{\partial\overline{z}_{k}}u\right)-\frac{\partial}{\partial\overline{z}_{k}}\left(e^{\varphi}\frac{\partial}{\partial z_{j}}(e^{-\varphi}u)\right)\\ &=e^{\varphi}\frac{\partial}{\partial z_{j}}\frac{\partial}{\partial\overline{z}_{k}}(e^{-\varphi}u)+e^{\varphi}\frac{\partial}{\partial z_{j}}\left(\frac{\partial\varphi}{\partial\overline{z}_{k}}e^{-\varphi}u\right)-\frac{\partial}{\partial\overline{z}_{k}}\left(e^{\varphi}\frac{\partial}{\partial z_{j}}(e^{-\varphi}u)\right)\\ &=e^{\varphi}\frac{\partial}{\partial z_{j}}\frac{\partial}{\partial\overline{z}_{k}}(e^{-\varphi}u)+e^{\varphi}\frac{\partial}{\partial z_{j}}\left(\frac{\partial\varphi}{\partial\overline{z}_{k}}e^{-\varphi}u\right)\\ &-e^{\varphi}\frac{\partial}{\partial\overline{z}_{k}}\frac{\partial}{\partial z_{j}}(e^{-\varphi}u)-e^{\varphi}\frac{\partial\varphi}{\partial\overline{z}_{k}}\frac{\partial}{\partial z_{j}}(e^{-\varphi}u). \end{split}$$

The first and third terms cancel. The product rule implies that

$$e^{\varphi}\frac{\partial}{\partial z_{j}}\left(\frac{\partial\varphi}{\partial\overline{z}_{k}}e^{-\varphi}u\right)-e^{\varphi}\frac{\partial\varphi}{\partial\overline{z}_{k}}\frac{\partial}{\partial z_{j}}(e^{-\varphi}u)=\frac{\partial^{2}\varphi}{\partial z_{j}\partial\overline{z}_{k}}u.$$

Math 650-600

The final inequality

Putting the pieces together, we have

$$\int_{\Omega} \sum_{j,k} \left(\frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} f_j \overline{f_k} - 2|f|^2 |\partial \psi|^2 \right) e^{-\varphi_3} \le \|\overline{\partial} f\|_{\varphi_3}^2 + 2\|\overline{\partial}^* f\|_{\varphi_1}^2.$$

Choosing φ such that

$$\sum_{j,k} \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} f_j \overline{f_k} \ge 2|f|^2 (|\partial \psi|^2 + e^{\psi})$$

makes the left-hand side $\geq 2 \|f\|_{\varphi_2}^2$ since $\psi = \varphi_3 - \varphi_2$.

Thus we have the key estimate, and hence the solvability of the $\overline{\partial}$ -equation, if we can construct suitable functions ψ and φ .

Math 650-600

April 28, 2005 — slide #6

Construction of φ

Supposing the function ψ to be fixed, we need to construct a very strongly plurisubharmonic function φ such that

$$\sum_{j,k} \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} w_j \overline{w}_k \ge 2|w|^2 (|\partial \psi|^2 + e^{\psi}) \quad \text{for all } w \text{ in } \mathbb{C}^n.$$

Suppose we already have a C^{∞} plurisubharmonic exhaustion function φ_0 for Ω . By adding $|z|^2$ to φ_0 , we can ensure that $\sum_{j,k} \frac{\partial^2 \varphi_0}{\partial z_j \partial \overline{z}_k} w_j \overline{w}_k \ge |w|^2$ for all w in \mathbb{C}^n . If χ is a convex C^{∞} function of one real variable, then $\sum_{j,k} \frac{\partial^2 (\chi \circ \varphi_0)}{\partial z_j \partial \overline{z}_k} w_j \overline{w}_k \ge (\chi' \circ \varphi_0) \sum_{j,k} \frac{\partial^2 \varphi_0}{\partial z_j \partial \overline{z}_k} w_j \overline{w}_k \ge (\chi' \circ \varphi_0) |w|^2$.

If χ is sufficiently rapidly increasing, then $\varphi := \chi \circ \varphi_0$ works.

Math 650-600

Smooth plurisubharmonic exhaustion

Let *u* be a continuous plurisubharmonic exhaustion function, say $u(z) = \max(-\log \operatorname{dist}(z, b\Omega), |z|^2)$. By convolving with a mollifier and adding $\epsilon |z|^2$, we can get a function u_j in $C^{\infty}(\Omega)$ such that on $\{z \in \Omega : u(z) \leq j+1\}$ the function u_j is strictly plurisubharmonic and $u(z) < u_j(z) < u(z) + 1$.

Compose u_j with a convex, C^{∞} , (weakly) increasing function χ_j of one real variable such that $\chi_j(t) = 0$ when t < j and χ_j is rapidly increasing when t > j. The sum $\sum_{j=1}^{\infty} (\chi_j \circ u_j)$ is locally finite, and so defines a C^{∞} function that, for suitable choices of the χ_j , is an exhaustion function that is plurisubharmonic on each set $\{z \in \Omega : j \le u(z) \le (j+1)\}$.

Thus every pseudoconvex domain in \mathbb{C}^n admits a C^{∞} strictly plurisubharmonic exhaustion function.

Math 650-600