Math 650-600: Several Complex Variables

Harold P. Boas

boas@tamu.edu

Final class meeting

Our last meeting will be on the afternoon of the redefined day, Tuesday 3 May, 3:15-4:30 in Milner 313.

Recap from last time

Solving the $\bar{\partial}$-equation in $C^{\infty}(\Omega)$ for $(0,1)$-forms on a pseudoconvex domain Ω reduces to constructing weight functions φ_{1}, φ_{2}, and φ_{3} for which one has the key estimate

$$
\|f\|_{\varphi_{2}} \leq\left\|\bar{\partial}^{*} f\right\|_{\varphi_{1}}+\|\bar{\partial} f\|_{\varphi_{3}}
$$

when $f=\sum_{j=1}^{n} f_{j} d \bar{z}_{j}$ is in $\operatorname{Dom} \bar{\partial}^{*} \cap \operatorname{Dom} \bar{\partial}$.
By a clever choice of the weight functions, we reduce to proving the key estimate when f has compactly supported smooth coefficients, so we can integrate by parts without boundary terms.

We will construct two functions φ and ψ and set $\varphi_{3}=\varphi, \varphi_{2}=\varphi-\psi, \varphi_{1}=\varphi-2 \psi$, which means that $\varphi_{3}-\varphi_{2}=\psi$ and $\varphi_{2}-\varphi_{1}=\psi$. The role of ψ is to guarantee density of $C_{0}^{\infty}(\Omega)$ in Dom $\bar{\partial}^{*} \cap \operatorname{Dom} \bar{\partial}$, while φ exploits the pseudoconvexity of Ω.

The calculation in progress

Explicit computation showed that

$$
\sum_{j, k}\left(\left\langle\delta_{j} f_{j}, \delta_{k} f_{k}\right\rangle_{\varphi}-\left\langle\frac{\partial f_{j}}{\partial \bar{z}_{k}}, \frac{\partial f_{k}}{\partial \bar{z}_{j}}\right\rangle_{\varphi}\right) \leq\|\bar{\partial} f\|_{\varphi_{3}}^{2}+2\left\|\bar{\partial}^{*} f\right\|_{\varphi_{1}}^{2}+2 \int_{\Omega}|f|^{2}|\partial \psi|^{2} e^{-\varphi}
$$

where $\delta_{j} f_{j}=e^{\varphi} \frac{\partial}{\partial z_{j}}\left(e^{-\varphi} f_{j}\right)$. Since we may assume that f has compact support, two integrations by parts convert the left-hand side to

$$
\sum_{j, k}\left\langle\left(\delta_{j} \frac{\partial}{\partial \bar{z}_{k}}-\frac{\partial}{\partial \bar{z}_{k}} \delta_{j}\right) f_{j}, f_{k}\right\rangle_{\varphi}
$$

and we want to show that this term equals

$$
\sum_{j, k}\left\langle\frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} f_{j}, f_{k}\right\rangle_{\varphi}
$$

Math 650-600

Computation of the commutator term

For a smooth function u, the definition of the operator δ_{j} gives
$\left(\delta_{j} \frac{\partial}{\partial \bar{z}_{k}}-\frac{\partial}{\partial \bar{z}_{k}} \delta_{j}\right) u=e^{\varphi} \frac{\partial}{\partial z_{j}}\left(e^{-\varphi} \frac{\partial}{\partial \bar{z}_{k}} u\right)-\frac{\partial}{\partial \bar{z}_{k}}\left(e^{\varphi} \frac{\partial}{\partial z_{j}}\left(e^{-\varphi} u\right)\right)$
$=e^{\varphi} \frac{\partial}{\partial z_{j}} \frac{\partial}{\partial \bar{z}_{k}}\left(e^{-\varphi} u\right)+e^{\varphi} \frac{\partial}{\partial z_{j}}\left(\frac{\partial \varphi}{\partial \bar{z}_{k}} e^{-\varphi} u\right)-\frac{\partial}{\partial \bar{z}_{k}}\left(e^{\varphi} \frac{\partial}{\partial z_{j}}\left(e^{-\varphi} u\right)\right)$
$=e^{\varphi} \frac{\partial}{\partial z_{j}} \frac{\partial}{\partial \bar{z}_{k}}\left(e^{-\varphi} u\right)+e^{\varphi} \frac{\partial}{\partial z_{j}}\left(\frac{\partial \varphi}{\partial \bar{z}_{k}} e^{-\varphi_{u}}\right)$
$-e^{\varphi} \frac{\partial}{\partial \bar{z}_{k}} \frac{\partial}{\partial z_{j}}\left(e^{-\varphi} u\right)-e^{\varphi} \frac{\partial \varphi}{\partial \bar{z}_{k}} \frac{\partial}{\partial z_{j}}\left(e^{-\varphi} u\right)$.
The first and third terms cancel. The product rule implies that

$$
e^{\varphi} \frac{\partial}{\partial z_{j}}\left(\frac{\partial \varphi}{\partial \bar{z}_{k}} e^{-\varphi} u\right)-e^{\varphi} \frac{\partial \varphi}{\partial \bar{z}_{k}} \frac{\partial}{\partial z_{j}}\left(e^{-\varphi} u\right)=\frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} u .
$$

The final inequality

Putting the pieces together, we have

$$
\int_{\Omega} \sum_{j, k}\left(\frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} f_{j} \overline{f_{k}}-2|f|^{2}|\partial \psi|^{2}\right) e^{-\varphi_{3}} \leq\|\bar{\partial} f\|_{\varphi_{3}}^{2}+2\left\|\bar{\partial}^{*} f\right\|_{\varphi_{1}}^{2}
$$

Choosing φ such that

$$
\sum_{j, k} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} f_{j} \overline{f_{k}} \geq 2|f|^{2}\left(|\partial \psi|^{2}+e^{\psi}\right)
$$

makes the left-hand side $\geq 2\|f\|_{\varphi_{2}}^{2}$ since $\psi=\varphi_{3}-\varphi_{2}$.
Thus we have the key estimate, and hence the solvability of the $\bar{\partial}$-equation, if we can construct suitable functions ψ and φ.

Construction of φ

Supposing the function ψ to be fixed, we need to construct a very strongly plurisubharmonic function φ such that

$$
\sum_{j, k} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} w_{j} \bar{w}_{k} \geq 2|w|^{2}\left(|\partial \psi|^{2}+e^{\psi}\right) \quad \text { for all } w \text { in } \mathbb{C}^{n}
$$

Suppose we already have a C^{∞} plurisubharmonic exhaustion function φ_{0} for Ω. By adding $|z|^{2}$ to φ_{0}, we can ensure that $\sum_{j, k} \frac{\partial^{2} \varphi_{0}}{\partial z_{j} \partial \bar{z}_{k}} w_{j} \bar{w}_{k} \geq|w|^{2}$ for all w in \mathbb{C}^{n}.
If χ is a convex C^{∞} function of one real variable, then
$\sum_{j, k} \frac{\partial^{2}\left(\chi \circ \varphi_{0}\right)}{\partial z_{j} \partial \bar{z}_{k}} w_{j} \bar{w}_{k} \geq\left(\chi^{\prime} \circ \varphi_{0}\right) \sum_{j, k} \frac{\partial^{2} \varphi_{0}}{\partial z_{j} \partial \bar{z}_{k}} w_{j} \bar{w}_{k} \geq\left(\chi^{\prime} \circ \varphi_{0}\right)|w|^{2}$.
If χ is sufficiently rapidly increasing, then $\varphi:=\chi \circ \varphi_{0}$ works.

Smooth plurisubharmonic exhaustion

Let u be a continuous plurisubharmonic exhaustion function, say $u(z)=$ $\max \left(-\log \operatorname{dist}(z, b \Omega),|z|^{2}\right)$. By convolving with a mollifier and adding $\epsilon|z|^{2}$, we can get a function u_{j} in $C^{\infty}(\Omega)$ such that on $\{z \in \Omega: u(z) \leq j+1\}$ the function u_{j} is strictly plurisubharmonic and $u(z)<u_{j}(z)<u(z)+1$.

Compose u_{j} with a convex, C^{∞}, (weakly) increasing function χ_{j} of one real variable such that $\chi_{j}(t)=0$ when $t<j$ and χ_{j} is rapidly increasing when $t>j$. The sum $\sum_{j=1}^{\infty}\left(\chi_{j} \circ u_{j}\right)$ is locally finite, and so defines a C^{∞} function that, for suitable choices of the χ_{j}, is an exhaustion function that is plurisubharmonic on each set $\{z \in \Omega: j \leq u(z) \leq(j+1)\}$.

Thus every pseudoconvex domain in \mathbb{C}^{n} admits a C^{∞} strictly plurisubharmonic exhaustion function.

