Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Announcement

This week I will be traveling to Washington.

Our class *will not meet* on February 3 (Thursday).

Math 650-600

February 1, 2005 — slide #2

Math 650-600

February 1, 2005 — slide #3

Polynomial approximation

Mergelyan's theorem in the plane. If *K* is compact and $\mathbb{C} \setminus K$ is connected, then every continuous function on *K* that is holomorphic in the interior of *K* can be approximated uniformly on *K* by holomorphic polynomials.

Exercise. The conclusion of Mergelyan's theorem holds on the bidisc in \mathbb{C}^2 .

Exercise. The conclusion of Mergelyan's theorem does not hold on the Hartogs triangle in \mathbb{C}^2 .

Math 650-600

February 1, 2005 — slide #4

The Hartogs phenomenon: version 3

Theorem. Let *K* be a compact subset of an open set Ω in \mathbb{C}^n with the property that $\Omega \setminus K$ is connected.

If $n \ge 2$, then every holomorphic function on $\Omega \setminus K$ extends holomorphically to Ω .

Corollary. Singular sets of holomorphic functions propagate out to the boundary. So do zero sets of holomorphic functions.

One modern proof of the theorem is based on the solvability of the $\overline{\partial}$ -equation with compact support when $n \ge 2$.

Math 650-600

February 1, 2005 — slide #5

Notation

In C: z = x + iy, whence dz = dx + i dy and $d\overline{z} = dx - i dy$. The exterior derivative $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) dz + \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) d\overline{z},$ so we define $\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$ and $\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$. Then $df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \overline{z}} d\overline{z}$. The Cauchy-Riemann equations say that $\frac{\partial f}{\partial \overline{z}} = 0$. In \mathbb{C}^n , analogously: $df = \sum_{j=1}^n \left(\frac{\partial f}{\partial z_j} dz_j + \frac{\partial f}{\partial \overline{z}_j} d\overline{z}_j \right)$, and by definition $\overline{\partial} f = \sum_{j=1}^{n} \frac{\partial f}{\partial \overline{z}_{j}} d\overline{z}_{j}$. The Cauchy-Riemann equations say that $\overline{\partial} f = 0$, which is an equivalent way of saying that f is

a holomorphic function.

Math 650-600

February 1, 2005 — slide #6