Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Polynomial approximation

Mergelyan's theorem in the plane. If *K* is compact and $\mathbb{C} \setminus K$ is connected, then every continuous function on *K* that is holomorphic in the interior of *K* can be approximated uniformly on *K* by holomorphic polynomials.

Exercise. The conclusion of Mergelyan's theorem holds on the bidisc in \mathbb{C}^2 .

Exercise. The conclusion of Mergelyan's theorem does not hold on the Hartogs triangle in \mathbb{C}^2 .

Math 650-600

February 8, 2005 — slide #2

The Hartogs phenomenon: version 3

Theorem. Let *K* be a compact subset of an open set Ω in \mathbb{C}^n with the property that $\Omega \setminus K$ is connected.

If $n \ge 2$, then every holomorphic function on $\Omega \setminus K$ extends holomorphically to Ω .

Corollary. Singular sets of holomorphic functions propagate out to the boundary. So do zero sets of holomorphic functions.

We will prove the theorem by using the solvability of the inhomogeneous $\overline{\partial}$ -equation with compact support when $n \ge 2$.

Math 650-600

February 8, 2005 — slide #3

Inhomogeneous Cauchy-Riemann equations

 $\overline{\partial} f = g$, where $g = \sum_{j=1}^{n} g_j d\overline{z}_j$, represents (when n > 1) a *system* of partial differential equations

$$\frac{\partial f}{\partial \overline{z}_j} = g_j, \qquad 1 \le j \le n.$$

When n > 1, there is a necessary compatibility condition

$$\frac{\partial g_j}{\partial \overline{z}_k} = \frac{\partial g_k}{\partial \overline{z}_j}$$
 for all *j* and *k*.

This compatibility condition may be written as $\overline{\partial}g = 0$, since $\overline{\partial}g = \sum_{j=1}^{n} (\overline{\partial}g_j) \wedge d\overline{z}_j$, and the wedge product on differential forms of degree 1 is anti-commutative.

Math 650-600

February 8, 2005 — slide #4

The $\overline{\partial}$ -problem

If $\overline{\partial}g = 0$, does there exist f such that $\overline{\partial}f = g$?

The problem is solvable *locally*, but whether a *global* solution exists depends on the domain (when $n \ge 2$).

Solution of the $\overline{\partial}$ **-problem in the plane.** If *g* has continuous first partial derivatives on the closure of a bounded domain *G* in \mathbb{C} , then a solution of the equation $\frac{\partial f}{\partial \overline{z}} = g$ is given by

$$f(z) = \frac{1}{2\pi i} \int_G \frac{g(\zeta)}{\zeta - z} \, d\zeta \wedge d\overline{\zeta}.$$

We will see that the proof follows from Cauchy's formula with remainder.

Math 650-600

February 8, 2005 — slide #5