# Math 650-600: Several Complex Variables 

Harold P. Boas

boas@tamu.edu

## Polynomial approximation

Mergelyan's theorem in the plane. If $K$ is compact and $\mathbb{C} \backslash K$ is connected, then every continuous function on $K$ that is holomorphic in the interior of $K$ can be approximated uniformly on $K$ by holomorphic polynomials.

Exercise. The conclusion of Mergelyan's theorem holds on the bidisc in $\mathbb{C}^{2}$.
Exercise. The conclusion of Mergelyan's theorem does not hold on the Hartogs triangle in $\mathbb{C}^{2}$.

## The $\bar{\partial}$-problem

If $\bar{\partial} g=0$, does there exist $f$ such that $\bar{\partial} f=g$ ?
The problem is solvable locally, but whether a global solution exists depends on the domain (when $n \geq 2$ ).

Solution of the $\bar{\partial}$-problem in the plane. If $g$ has continuous first partial derivatives on the closure of a bounded domain $G$ in $\mathbb{C}$, then a solution of the equation $\frac{\partial f}{\partial \bar{z}}=g$ is given by

$$
f(z)=\frac{1}{2 \pi i} \int_{G} \frac{g(\zeta)}{\zeta-z} d \zeta \wedge d \bar{\zeta}
$$

We will see that the proof follows from Cauchy's formula with remainder.

## Cauchy's formula with remainder

If $\Omega$ is a bounded domain in $\mathbb{C}$ whose boundary is a continuously differentiable curve $\gamma$, and if the function $g$ has continuous first partial derivatives on the closure of $\Omega$, then for every point $z$ in $\Omega$ we have the integral representation

$$
g(z)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{g(\zeta)}{\zeta-z} d \zeta+\frac{1}{2 \pi i} \int_{\Omega} \frac{\partial g / \partial \bar{\zeta}}{\zeta-z} d \zeta \wedge d \bar{\zeta}
$$

Proof. Apply the theorem of Green/Stokes to $\Omega \backslash B(z, \epsilon)$ and let $\epsilon \rightarrow 0$.
Observe that
$\frac{1}{2 \pi i} \oint_{\partial B(z, \epsilon)} \frac{g(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(z+\epsilon e^{i \theta}\right) d \theta \xrightarrow{\epsilon \rightarrow 0} g(z)$.

## Green and Stokes

## George Green

(1793-1841)
Self-taught mathematician He introduced the mathematical term "potential function".

(1819-1903)
Mathematician and physicist

## Solving $\bar{\partial}$ in the plane: proof

First suppose that $g$ has compact support in the domain $G$. Then
$f(z):=\frac{1}{2 \pi i} \int_{G} \frac{g(\zeta)}{\zeta-z} d \zeta \wedge d \bar{\zeta}=\frac{1}{2 \pi i} \int_{C} \frac{g(\zeta+z)}{\zeta} d \zeta \wedge d \bar{\zeta}$, so $\frac{\partial f}{\partial \bar{z}}=\frac{1}{2 \pi i} \int_{C} \frac{\partial g / \partial \bar{\zeta}}{\zeta} d \zeta \wedge d \bar{\zeta}$.
The right-hand side is precisely $g(z)$ by the Cauchy integral formula with remainder written for a large disc containing the support of $g$.

Final step: if $g$ does not have compact support, take a bump function $\varphi$ supported near some $z_{0}$ and identically equal to 1 in a neighborhood of $z_{0}$. Write $f(z)$ as the sum of $\frac{1}{2 \pi i} \int_{G} \frac{\varphi(\zeta) g(\zeta)}{\zeta-z} d \zeta \wedge$ $d \bar{\zeta}$ and $\frac{1}{2 \pi i} \int_{G} \frac{(1-\varphi(\zeta)) g(\zeta)}{\zeta-z} d \zeta \wedge d \bar{\zeta}$.

## Exercises on $\bar{\partial}$ in the plane

1. Find an explicit (smooth) solution to the equation $\partial f / \partial \bar{z}=1 / z$ in the punctured plane $\mathbb{C} \backslash\{0\}$.
2. Find an explicit (smooth) solution to the equation $\partial f / \partial \bar{z}=1 / \bar{z}$ in the punctured plane $\mathbb{C} \backslash\{0\}$.
