Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Polynomial approximation

Mergelyan's theorem in the plane. If *K* is compact and $\mathbb{C} \setminus K$ is connected, then every continuous function on *K* that is holomorphic in the interior of *K* can be approximated uniformly on *K* by holomorphic polynomials.

Exercise. The conclusion of Mergelyan's theorem holds on the bidisc in \mathbb{C}^2 .

Exercise. The conclusion of Mergelyan's theorem does not hold on the Hartogs triangle in \mathbb{C}^2 .

Math 650-600

February 10, 2005 — slide #2

The $\overline{\partial}$ -problem

If $\overline{\partial}g = 0$, does there exist f such that $\overline{\partial}f = g$?

The problem is solvable *locally*, but whether a *global* solution exists depends on the domain (when $n \ge 2$).

Solution of the $\overline{\partial}$ **-problem in the plane.** If *g* has continuous first partial derivatives on the closure of a bounded domain *G* in \mathbb{C} , then a solution of the equation $\frac{\partial f}{\partial \overline{z}} = g$ is given by

$$f(z) = \frac{1}{2\pi i} \int_{G} \frac{g(\zeta)}{\zeta - z} \, d\zeta \wedge d\overline{\zeta}.$$

We will see that the proof follows from Cauchy's formula with remainder.

Math 650-600

February 10, 2005 — slide #3

Cauchy's formula with remainder

If Ω is a bounded domain in \mathbb{C} whose boundary is a continuously differentiable curve γ , and if the function *g* has continuous first partial derivatives on the closure of Ω , then for every point *z* in Ω we have the integral representation

$$g(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{g(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \int_{\Omega} \frac{\partial g / \partial \overline{\zeta}}{\zeta - z} d\zeta \wedge d\overline{\zeta}.$$

Proof. Apply the theorem of Green/Stokes to $\Omega \setminus B(z, \epsilon)$ and let $\epsilon \to 0$. Observe that $\frac{1}{2\pi i} \oint_{\partial B(z,\epsilon)} \frac{g(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi} \int_0^{2\pi} g(z + \epsilon e^{i\theta}) d\theta \xrightarrow{\epsilon \to 0} g(z).$

Math 650-600

February 10, 2005 — slide #4

Green and Stokes

George Green (1793–1841)

Self-taught mathematician

He introduced the mathematical term "potential function".

George Gabriel Stokes

(1819–1903) Mathematician and physicist

Math 650-600

February 10, 2005 — slide #5

Solving $\overline{\partial}$ in the plane: proof

First suppose that *g* has compact support in the domain *G*. Then

$$f(z) := \frac{1}{2\pi i} \int_{\mathcal{G}} \frac{g(\zeta)}{\zeta - z} \, d\zeta \wedge d\overline{\zeta} = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{g(\zeta + z)}{\zeta} \, d\zeta \wedge d\overline{\zeta}, \text{ so } \frac{\partial f}{\partial \overline{z}} = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial g/\partial\overline{\zeta}}{\zeta - z} \, d\zeta \wedge d\overline{\zeta}.$$

The right-hand side is precisely g(z) by the Cauchy integral formula with remainder written for a large disc containing the support of g.

Final step: if *g* does not have compact support, take a bump function φ supported near some z_0 and identically equal to 1 in a neighborhood of z_0 . Write f(z) as the sum of $\frac{1}{2\pi i} \int_G \frac{\varphi(\zeta)g(\zeta)}{\zeta - z} d\zeta \wedge d\zeta$

$$d\overline{\zeta}$$
 and $\frac{1}{2\pi i} \int_G \frac{(1-\overline{\varphi}(\zeta))g(\zeta)}{\zeta-z} d\zeta \wedge d\overline{\zeta}.$

Math 650-600

February 10, 2005 — slide #6

Exercises on $\overline{\partial}$ in the plane

- 1. Find an explicit (smooth) solution to the equation $\partial f / \partial \overline{z} = 1/z$ in the punctured plane $\mathbb{C} \setminus \{0\}$.
- 2. Find an explicit (smooth) solution to the equation $\partial f / \partial \overline{z} = 1/\overline{z}$ in the punctured plane $\mathbb{C} \setminus \{0\}$.

Math 650-600

February 10, 2005 — slide #7