Announcement

Math Club Meeting

Complex Numbers and Geometry

Dorin Andrica

(Babes-Bolyai University, Romania)

Thursday, February 17, 6:30 PM

Blocker 627

Math 650-600

February 15, 2005 — slide #2

Solution of the $\overline{\partial}$ -problem in the plane

Reminder from last time

If *g* has continuous first partial derivatives on the closure of a bounded domain *G* in \mathbb{C} , then a solution of the equation $\frac{\partial f}{\partial \overline{z}} = g$ is given by

$$f(z) = \frac{1}{2\pi i} \int_G \frac{g(\zeta)}{\zeta - z} d\zeta \wedge d\overline{\zeta}.$$

The proof follows from Cauchy's integral formula with remainder.

Math 650-600

Exercises on $\overline{\partial}$ in the plane

- 1. Find an explicit (smooth) solution to the equation $\partial f / \partial \overline{z} = 1/z$ in the punctured plane $\mathbb{C} \setminus \{0\}$.
- 2. Find an explicit (smooth) solution to the equation $\partial f / \partial \overline{z} = 1/\overline{z}$ in the punctured plane $\mathbb{C} \setminus \{0\}$.

Math 650-600

February 15, 2005 — slide #4

Natural boundary in the plane

Example. The power series $\sum_{n=1}^{\infty} \frac{1}{n!} z^{2^n}$ represents a holomorphic function in the open unit disc $\{z \in \mathbb{C} : |z| < 1\}$ that extends to be a class C^{∞} function on the closed unit disc $\{z \in \mathbb{C} : |z| \le 1\}$ but that does not admit an analytic continuation to a neighborhood of any boundary point.

The fact that the unit circle is the natural boundary for this series follows (for instance) from the *Hadamard gap theorem*:

If $\{p_n\}$ is an exponentially increasing sequence of positive integers, then the series $\sum_{n=1}^{\infty} a_n z^{p_n}$ does not extend holomorphically across any boundary point of its disc of convergence.

Here "exponentially increasing" means that there exists a positive number λ such that $p_{n+1} \ge (1 + \lambda)p_n$ for all n.

Math 650-600

Domains of holomorphy

Theorem/definition. A connected open set Ω in \mathbb{C}^n is called a domain of holomorphy if either of the following two equivalent properties holds.

- 1. There exists a holomorphic function on Ω that does not extend holomorphically across any part of the boundary.
- 2. For every point p in the boundary of Ω , there exists a holomorphic function on Ω that does not extend holomorphically across the boundary at p.

Obviously (1) \implies (2). We will prove the converse later.

The precise meaning of "*f* does not extend holomorphically across the boundary at *p*" is "there do not exist a connected neighborhood *U* of *p* and a non-empty open subset *V* of $U \cap \Omega$ and a holomorphic function *F* on *U* such that $F|_V = f$."

Math 650-600

February 15, 2005 — slide #6

Solving $\overline{\partial}$ when $n \ge 2$

Theorem. When $n \ge 2$, if $g = \sum_{j=1}^{n} g_j(z) d\overline{z}_j$ satisfies the compatibility condition $\overline{\partial}g = 0$, and if each g_j is a continuously differentiable function having compact support in \mathbb{C}^n , then there is a compactly supported continuously differentiable function f such that $\overline{\partial}f = g$.

Proof. Set
$$f(z_1, \ldots, z_n) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{g_1(\zeta, z_2, \ldots, z_n)}{\zeta - z_1} d\zeta \wedge d\overline{\zeta}.$$

Then $\partial f / \partial \overline{z}_1 = g_1$ by the one-variable case previously considered. When j > 1, pass the derivative $\partial / \partial \overline{z}_j$ under the integral sign and use the compatibility condition to replace $\partial g_1 / \partial \overline{z}_j$ with $\partial g_j / \partial \overline{\zeta}$. The one-variable Cauchy formula with remainder implies that $\partial f / \partial \overline{z}_j = g_j$.

Finally, *f* has compact support because *f* is holomorphic outside a compact set, and *f* vanishes when $|z_n|$ is large.

Math 650-600

Exercise: $1 \neq 2$

In contrast to the situation when $n \ge 2$, show that in \mathbb{C} , if g has compact support but $\int_{\mathbb{C}} g(z) dz \land d\overline{z} \ne 0$, then no function f such that $\partial f / \partial \overline{z} = g$ can have compact support.

Math 650-600