Announcement	
Math Club Meeting	
Complex Numbers and Geometry	
Dorin Andrica	
(Babes-Bolyai University, Romania)	
Thursday, February 17, 6:30 PM	
Blocker 627	

Solution of the $\bar{\partial}$-problem in the plane

Reminder from last time

If g has continuous first partial derivatives on the closure of a bounded domain G in \mathbb{C}, then a solution of the equation $\frac{\partial f}{\partial \bar{z}}=g$ is given by

$$
f(z)=\frac{1}{2 \pi i} \int_{G} \frac{g(\zeta)}{\zeta-z} d \zeta \wedge d \bar{\zeta}
$$

The proof follows from Cauchy's integral formula with remainder.

Exercises on $\bar{\gamma}$ in the plane

1. Find an explicit (smooth) solution to the equation $\partial f / \partial \bar{z}=1 / z$ in the punctured plane $\mathbb{C} \backslash\{0\}$.
2. Find an explicit (smooth) solution to the equation $\partial f / \partial \bar{z}=1 / \bar{z}$ in the punctured plane $\mathbb{C} \backslash\{0\}$.

Natural boundary in the plane

Example. The power series $\sum_{n=1}^{\infty} \frac{1}{n!} z^{2^{n}}$ represents a holomorphic function in the open unit disc $\{z \in \mathbb{C}:|z|<1\}$ that extends to be a class C^{∞} function on the closed unit disc $\{z \in \mathbb{C}:|z| \leq 1\}$ but that does not admit an analytic continuation to a neighborhood of any boundary point.

The fact that the unit circle is the natural boundary for this series follows (for instance) from the Hadamard gap theorem:
If $\left\{p_{n}\right\}$ is an exponentially increasing sequence of positive integers, then the series $\sum_{n=1}^{\infty} a_{n} z^{p_{n}}$ does not extend holomorphically across any boundary point of its disc of convergence.
Here "exponentially increasing" means that there exists a positive number λ such that $p_{n+1} \geq$ $(1+\lambda) p_{n}$ for all n.

Domains of holomorphy

Theorem/definition. A connected open set Ω in \mathbb{C}^{n} is called a domain of holomorphy if either of the following two equivalent properties holds.

1. There exists a holomorphic function on Ω that does not extend holomorphically across any part of the boundary.
2. For every point p in the boundary of Ω, there exists a holomorphic function on Ω that does not extend holomorphically across the boundary at p.

Obviously (1) \Longrightarrow (2). We will prove the converse later.
The precise meaning of " f does not extend holomorphically across the boundary at p " is "there do not exist a connected neighborhood U of p and a non-empty open subset V of $U \cap \Omega$ and a holomorphic function F on U such that $\left.F\right|_{V}=f$."

Math 650-600
February 15, 2005 - slide \#6

Solving $\bar{\partial}$ when $n \geq 2$

Theorem. When $n \geq 2$, if $g=\sum_{j=1}^{n} g_{j}(z) d \bar{z}_{j}$ satisfies the compatibility condition $\bar{\partial} g=0$, and if each g_{j} is a continuously differentiable function having compact support in \mathbb{C}^{n}, then there is a compactly supported continuously differentiable function f such that $\bar{\partial} f=g$.

Proof. Set $f\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{2 \pi i} \int_{C} \frac{g_{1}\left(\zeta, z_{2}, \ldots, z_{n}\right)}{\zeta-z_{1}} d \zeta \wedge d \bar{\zeta}$.
Then $\partial f / \partial \bar{z}_{1}=g_{1}$ by the one-variable case previously considered. When $j>1$, pass the derivative $\partial / \partial \bar{z}_{j}$ under the integral sign and use the compatibility condition to replace $\partial g_{1} / \partial \bar{z}_{j}$ with $\partial g_{j} / \partial \bar{\zeta}$. The one-variable Cauchy formula with remainder implies that $\partial f / \partial \bar{z}_{j}=g_{j}$.
Finally, f has compact support because f is holomorphic outside a compact set, and f vanishes when $\left|z_{n}\right|$ is large.

Exercise: $1 \neq 2$

In contrast to the situation when $n \geq 2$, show that in \mathbb{C}, if g has compact support but $\int_{\mathbb{C}} g(z) d z \wedge$ $d \bar{z} \neq 0$, then no function f such that $\partial f / \partial \bar{z}=g$ can have compact support.

