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Exercises on convexity

A domain Ω in Cn is convex with respect to a set F of real-valued functions on Ω if K ⊂⊂ Ω ⇒

K̂F ⊂⊂ Ω.
Here K̂F denotes the F -hull of K: the set of points z in Ω such that f (z) ≤ sup{ f (w) : w ∈ K}
for every function f in F .
The notation “K ⊂⊂ Ω” means that K is a “relatively compact” subset of Ω: the closure of K is
a compact subset of Ω.

Exercise. Let F be the set of real parts of holomorphic polynomials of degree 1. Show that Ω is
convex with respect to F if and only if Ω is convex in the ordinary geometric sense.

Exercise. Let F be the set of moduli of holomorphic polynomials of degree 1. Show that Ω is
convex with respect to F if and only if Ω is convex in the ordinary geometric sense.
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Polynomial convexity

When F is the set of moduli of holomorphic polynomials, convexity with respect to F is called
polynomial convexity.

A version of Runge’s theorem. A domain Ω in the plane C is polynomially convex if and only
if Ω is simply connected.

When n ≥ 2, there is no topological characterization of polynomial convexity.

Example/theorem (Eva Kallin, 1964). There exist three disjoint closed polydiscs in C3 whose
union is not polynomially convex. On the other hand, the union of three disjoint closed balls
in Cn is always polynomially convex.

Open problem. Is the union of four disjoint closed balls in Cn always polynomially convex?
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Linear (fractional) convexity

Let Ω be a domain in Cn, and let F be the set of moduli of linear fractional functions
(
a +

∑
n
j=1 bjzj

)
/
(
c + ∑

n
j=1 djzj

)
that are holomorphic on Ω.

Theorem. A necessary and sufficient condition for Ω to be convex with respect to F is that for
each point p of the boundary of Ω there is a complex hyperplane that passes through p and
does not intersect Ω.
A domain with this property is called weakly linearly convex.

Exercise. Make a Venn diagram showing the relationships among the following concepts:

• convexity

• holomorphic convexity

• polynomial convexity

• weak linear convexity
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Proof of the theorem

If Ω has a supporting complex hyperplane at a boundary point p, then the reciprocal of the
defining equation of this hyperplane is a linear fractional function whose modulus belongs
to F and which blows up at p, so the F -hull of a compact set K stays away from p.

Conversely, if Ω is convex with respect to the set F of moduli of linear fractional functions, and
p is a boundary point of Ω, take an exhaustion of Ω by nested F -convex compact sets K j and a
sequence of points pj such that pj → p and pj /∈ Kj.
There is a linear fractional function f j such that max{| f j(z)| : z ∈ Kj} < 1 and f j(pj) = 1. The
level set { z : f j(z) = 1 } is a complex hyperplane passing through p j. Passing to a subsequence,
we find a limiting complex hyperplane passing through p which does not intersect Ω.
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Two references

Mats Andersson, Mikael Passare, and Ragnar Sigurdsson, Complex convexity and analytic func-
tionals, Birkhäuser, 2004; QA639.5 .A53 2004.

Lars Hörmander, Notions of convexity, Birkhäuser, 1994; QA639.5 .H67 1994.
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