Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Exercises on convexity

A domain Ω in \mathbb{C}^n is convex with respect to a set \mathcal{F} of real-valued functions on Ω if $K \subset \subset \Omega \Rightarrow \widehat{K}_{\mathcal{F}} \subset \subset \Omega$. Here $\widehat{K}_{\mathcal{F}}$ denotes the \mathcal{F} -hull of K: the set of points z in Ω such that $f(z) \leq \sup\{f(w) : w \in K\}$

for every function f in \mathcal{F} .

The notation " $K \subset \Omega$ " means that *K* is a "relatively compact" subset of Ω : the closure of *K* is a compact subset of Ω .

Exercise. Let \mathcal{F} be the set of real parts of holomorphic polynomials of degree 1. Show that Ω is convex with respect to \mathcal{F} if and only if Ω is convex in the ordinary geometric sense.

Exercise. Let \mathcal{F} be the set of moduli of holomorphic polynomials of degree 1. Show that Ω is convex with respect to \mathcal{F} if and only if Ω is convex in the ordinary geometric sense.

Math 650-600

February 22, 2005 — slide #2

Polynomial convexity

When \mathcal{F} is the set of moduli of holomorphic polynomials, convexity with respect to \mathcal{F} is called *polynomial convexity*.

A version of Runge's theorem. A domain Ω in the plane \mathbb{C} is polynomially convex if and only if Ω is simply connected.

When $n \ge 2$, there is no topological characterization of polynomial convexity.

Example/theorem (Eva Kallin, 1964). There exist three disjoint closed polydiscs in \mathbb{C}^3 whose union is not polynomially convex. On the other hand, the union of three disjoint closed balls in \mathbb{C}^n is always polynomially convex.

Open problem. Is the union of four disjoint closed balls in \mathbb{C}^n always polynomially convex?

Math 650-600

February 22, 2005 — slide #3

Linear (fractional) convexity

Let Ω be a domain in \mathbb{C}^n , and let \mathcal{F} be the set of moduli of linear fractional functions $(a + \sum_{j=1}^n b_j z_j) / (c + \sum_{j=1}^n d_j z_j)$ that are holomorphic on Ω .

Theorem. A necessary and sufficient condition for Ω to be convex with respect to \mathcal{F} is that for each point *p* of the boundary of Ω there is a complex hyperplane that passes through *p* and does not intersect Ω .

A domain with this property is called *weakly linearly convex*.

Exercise. Make a Venn diagram showing the relationships among the following concepts:

- convexity
- holomorphic convexity
- polynomial convexity
- weak linear convexity

Math 650-600

February 22, 2005 — slide #4

Proof of the theorem

If Ω has a supporting complex hyperplane at a boundary point p, then the reciprocal of the defining equation of this hyperplane is a linear fractional function whose modulus belongs to \mathcal{F} and which blows up at p, so the \mathcal{F} -hull of a compact set K stays away from p.

Conversely, if Ω is convex with respect to the set \mathcal{F} of moduli of linear fractional functions, and p is a boundary point of Ω , take an exhaustion of Ω by nested \mathcal{F} -convex compact sets K_j and a sequence of points p_j such that $p_j \rightarrow p$ and $p_j \notin K_j$.

There is a linear fractional function f_j such that $\max\{|f_j(z)| : z \in K_j\} < 1$ and $f_j(p_j) = 1$. The level set $\{z : f_j(z) = 1\}$ is a complex hyperplane passing through p_j . Passing to a subsequence, we find a limiting complex hyperplane passing through p which does not intersect Ω .

Math 650-600

February 22, 2005 — slide #5

Two references

Mats Andersson, Mikael Passare, and Ragnar Sigurdsson, *Complex convexity and analytic functionals*, Birkhäuser, 2004; QA639.5 .A53 2004.

Lars Hörmander, Notions of convexity, Birkhäuser, 1994; QA639.5 .H67 1994.

Math 650-600

February 22, 2005 — slide #6