Math 650-600: Several Complex Variables

Harold P. Boas

boas@tamu.edu

Exercises on convexity

A domain Ω in \mathbb{C}^{n} is convex with respect to a set \mathcal{F} of real-valued functions on Ω if $K \subset \subset \Omega$ $\widehat{K}_{\mathcal{F}} \subset \subset \Omega$.

Exercise. Let \mathcal{F} be the set of moduli of holomorphic polynomials of degree 1 . Show that Ω is convex with respect to \mathcal{F} if and only if Ω is convex in the ordinary geometric sense.

Exercise. Make a Venn diagram showing the relationships among the following concepts:

- convexity
- holomorphic convexity
- polynomial convexity
- weak linear convexity

Math 650-600

Equivalence theorem

Notation: Ω is a domain in \mathbb{C}^{n} with boundary $b \Omega$, and \widehat{K} denotes the holomorphically convex hull of K with respect to Ω.

Theorem. The following properties are equivalent.

1. Ω is a domain of holomorphy in the sense that for every point of $b \Omega$ there exists a holomorphic function on Ω that "does not extend across the boundary near p ".
2. If $K \subset \subset \Omega$, then $\operatorname{dist}(K, b \Omega)=\operatorname{dist}(\widehat{K}, b \Omega)$.
3. If $K \subset \subset \Omega$, then $\widehat{K} \subset \subset \Omega$; in other words, Ω is holomorphically convex.
4. Ω is a domain of holomorphy in the sense that there exists a holomorphic function on Ω that "does not extend across any part of the boundary".

The implications $(2) \Rightarrow(3)$ and $(4) \Rightarrow(1)$ are easy. We will check $(3) \Rightarrow(4)$ and $(1) \Rightarrow(2)$.

Proof that (1) implies (2)

We will prove the contrapositive statement. If $\operatorname{dist}(\widehat{K}, b \Omega)$ is strictly smaller than $\operatorname{dist}(K, b \Omega)$, then there exist a point p in \widehat{K} and a polydisc D of polyradius $r=\left(r_{1}, \ldots, r_{n}\right)$ such that $(K+$ $D) \subset \subset \Omega$ but $(p+D) \cap b \Omega \neq \varnothing$.
If f is holomorphic on Ω, then $|f|$ is bounded by some constant M on $K+D$, and by the Cauchy estimates, each derivative $\left|f^{(\alpha)}\right|$ is bounded on K by $M \alpha!/ r^{\alpha}$. Then $\left|f^{(\alpha)}(p)\right| \leq M \alpha!/ r^{\alpha}$ because $p \in \widehat{K}$.
Therefore $\sum_{\alpha} \frac{1}{\alpha!} f^{(\alpha)}(p)(z-p)^{\alpha}$, the Taylor series of f, converges in $p+D$, a region that extends across part of the boundary of Ω. Thus all holomorphic functions on Ω extend across this part of the boundary.
Remark. For "dist", we could use any distance function (Euclidean, $\ell^{\infty}, \ell^{1}, \ldots$).

Proof that (3) implies (4)

Exhaust Ω by a nested sequence of holomorphically convex compact sets K_{j} and take a sequence of points p_{j} such that $p_{j} \in K_{j+1} \backslash K_{j}$ and for every open ball B that intersects $b \Omega$, every component of $B \cap \Omega$ contains infinitely many of the p_{j}.

Then choose a holomorphic function f_{j} bounded by 2^{-j} on K_{j} such that $\left|f_{j}\left(p_{j}\right)\right|>j+$ $\sum_{k=1}^{j-1}\left|f_{k}\left(p_{j}\right)\right|$. The series $\sum_{j} f_{j}$ converges uniformly on compact sets to a holomorphic function f. Since $\left|f\left(p_{j}\right)\right|>j-1$, and the sequence $\left\{p_{j}\right\}$ accumulates everywhere on the boundary, f does not extend across any part of the boundary.

To choose the sequence, start with the rational points enumerated such that each point occurs infinitely often. Let p_{j} be any point outside K_{j} and on the line segment joining the j th point in the list to a closest point of $b \Omega$.

