Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Exercises on convexity

A domain Ω in \mathbb{C}^n is convex with respect to a set \mathcal{F} of real-valued functions on Ω if $K \subset \subset \Omega \Rightarrow \widehat{K}_{\mathcal{F}} \subset \subset \Omega$.

Exercise. Let \mathcal{F} be the set of moduli of holomorphic polynomials of degree 1. Show that Ω is convex with respect to \mathcal{F} if and only if Ω is convex in the ordinary geometric sense.

Exercise. Make a Venn diagram showing the relationships among the following concepts:

- convexity
- holomorphic convexity
- polynomial convexity
- weak linear convexity

Math 650-600

February 24, 2005 — slide #2

Equivalence theorem

Notation: Ω is a domain in \mathbb{C}^n with boundary $b\Omega$, and \widehat{K} denotes the holomorphically convex hull of *K* with respect to Ω .

Theorem. The following properties are equivalent.

- 1. Ω is a domain of holomorphy in the sense that for every point of $b\Omega$ there exists a holomorphic function on Ω that "does not extend across the boundary near p".
- 2. If $K \subset \subset \Omega$, then $dist(K, b\Omega) = dist(\widehat{K}, b\Omega)$.
- 3. If $K \subset \subset \Omega$, then $\widehat{K} \subset \subset \Omega$; in other words, Ω is holomorphically convex.
- 4. Ω is a domain of holomorphy in the sense that there exists a holomorphic function on Ω that "does not extend across any part of the boundary".

The implications (2) \Rightarrow (3) and (4) \Rightarrow (1) are easy. We will check (3) \Rightarrow (4) and (1) \Rightarrow (2).

Math 650-600

February 24, 2005 — slide #3

Proof that (1) implies (2)

We will prove the contrapositive statement. If $dist(\widehat{K}, b\Omega)$ is strictly smaller than $dist(K, b\Omega)$, then there exist a point p in \widehat{K} and a polydisc D of polyradius $r = (r_1, \ldots, r_n)$ such that $(K + D) \subset \subset \Omega$ but $(p + D) \cap b\Omega \neq \emptyset$.

If *f* is holomorphic on Ω , then |f| is bounded by some constant *M* on *K* + *D*, and by the Cauchy estimates, each derivative $|f^{(\alpha)}|$ is bounded on *K* by $M\alpha!/r^{\alpha}$. Then $|f^{(\alpha)}(p)| \leq M\alpha!/r^{\alpha}$ because $p \in \widehat{K}$.

Therefore $\sum_{\alpha} \frac{1}{\alpha!} f^{(\alpha)}(p)(z-p)^{\alpha}$, the Taylor series of f, converges in p + D, a region that extends across part of the boundary of Ω . Thus all holomorphic functions on Ω extend across this part of the boundary.

Remark. For "dist", we could use any distance function (Euclidean, ℓ^{∞} , ℓ^{1} , ...).

Math 650-600

February 24, 2005 — slide #4

Proof that (3) implies (4)

Exhaust Ω by a nested sequence of holomorphically convex compact sets K_j and take a sequence of points p_j such that $p_j \in K_{j+1} \setminus K_j$ and for every open ball B that intersects $b\Omega$, every component of $B \cap \Omega$ contains infinitely many of the p_j .

Then choose a holomorphic function f_j bounded by 2^{-j} on K_j such that $|f_j(p_j)| > j + \sum_{k=1}^{j-1} |f_k(p_j)|$. The series $\sum_j f_j$ converges uniformly on compact sets to a holomorphic function f. Since $|f(p_j)| > j - 1$, and the sequence $\{p_j\}$ accumulates everywhere on the boundary, f does not extend across any part of the boundary.

To choose the sequence, start with the rational points enumerated such that each point occurs infinitely often. Let p_j be any point outside K_j and on the line segment joining the *j*th point in the list to a closest point of $b\Omega$.

Math 650-600

February 24, 2005 — slide #5