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Reminders on one-variable power series

Theorem. If the power series ∑
∞
n=0 cnzn converges when z = w, then the series converges

absolutely when |z| < |w| and uniformly on compact subsets of that disc.
Proof. Compare with a geometric series.

Corollary. The interior of the set on which the power series converges is a union of open discs
centered at 0 and therefore is either an open disc or the whole plane.

Cauchy-Hadamard formula. The radius of the disc of convergence equals

1
lim supn→∞ |cn|1/n .

Jacques
Hadamard

(1865–1963)
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Multi-variable power series: notation

Notation. In n dimensions, z means (z1, . . . , zn).

A multi-index α means an n-tuple of non-negative integers (α1, . . . , αn). Also |α|means the sum
α1 + · · ·+ αn, and α! means the product α1! · · · αn!.

The monomial zα means the product zα1
1 · · · z

αn
n .

A multi-variable power series has the form ∑α cαzα.

There is an ambiguity about the order in which the terms are added, so usually one considers
absolute convergence (in which case the order of terms does not matter).
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Multi-variable power series: first theorem

Theorem. If the power series ∑α cαzα converges absolutely when z = w, then the series con-
verges absolutely when |zj| < |wj| for all j and uniformly on compact subsets of that polydisc.

Proof. By hypothesis, there is a constant M such that |cαwα| ≤ M for all α.
Consider a compact polydisc such that |z j| ≤ λ|wj| for all j, where 0 < λ < 1.
In this compact polydisc, |cαzα| ≤ |cαλ

|α|wα| ≤ Mλ
|α|.

Now ∑α λ
|α| = ∑

∞
α1=0 · · ·∑

∞
αn=0 λ

α1 · · · λαn = 1
(1−λ)n .

Therefore ∑α cαzα converges uniformly and absolutely in the compact polydisc (by the Weier-
strass M-test).
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Interpretation of the theorem

(a) The largest open set on which a multi-variable power series ∑α cαzα converges absolutely is
a union of open polydiscs centered at 0.

(b) The proof shows that this convergence domain also is the interior of the set of points z for
which the terms |cαzα| admit a bound that is independent of α.
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Power series example

What is the convergence domain of the two-variable power series ∑
∞
k=0(

1
2k zk

1 + 1
2k zk

2 + zk
1z2k

2 +

z2k
1 zk

2)?

|z1|

|z2|

log |z1|

log |z2|
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Properties of convergence domains

The following properties hold for the largest open set where a power series ∑α cαzα converges
absolutely.

(a) The domain is multi-circular: if a point (z1, . . . , zn) belongs to the domain, so does the point
(λ1z1, . . . , λnzn) whenever |λj| = 1 for all j. Such a domain is also called a Reinhardt domain
[after Karl August Reinhardt (1895–1941)].

(b) The multi-circular domain is complete: property (a) holds whenever |λ j| ≤ 1 for all j.

(c) The domain is logarithmically convex: the set of points x in R
n for which the point (ex1 , . . . , exn)

belongs to the domain is a convex set.
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