Math 650-600: Several Complex Variables

Harold P. Boas

boas@tamu.edu

Karl August Reinhardt (1895-1941)

In 1928, Reinhardt solved the middle part of Hilbert's 18th problem: there exists a polyhedron that tiles three-dimensional space but that is not a fundamental domain for a group of rigid motions. Roughly speaking, this means that the symmetries of the tiling are not transitive.

In 1935, Heinrich Heesch found a planar example.

Heesch's tile
Math 650-600
January 25, 2005 - slide \#2

Review of convergence domains

The convergence domain of a multi-variable power series $\sum_{\alpha} c_{\alpha} z^{\alpha}$ means the largest open set on which the series converges absolutely.
The convergence is uniform on compact subsets of the convergence domain.
Theorem. The convergence domain of a power series is a complete Reinhardt domain that is logarithmically convex.

We already showed by comparing with geometric series that a convergence domain is a union of polydiscs centered at the origin, and this is just another way of saying that the domain is a complete Reinhardt domain.

Proof of logarithmic convexity

It suffices to prove logarithmic convexity of the set of points z for which $\left|c_{c_{\alpha}} z^{\alpha}\right|$ is bounded independently of α, because the convergence domain is the interior of that set.

If x and y are points of \mathbb{R}^{n} in the logarithmic image, then there is a constant M such that

$$
\left|c_{\alpha} e^{\alpha \cdot x}\right| \leq M \quad \text { and } \quad\left|c_{\alpha^{\alpha}} e^{\alpha \cdot y}\right| \leq M \quad \text { for all } \alpha,
$$

where $\alpha \cdot x$ means $\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$.
Taking the geometric average gives

$$
\left|c_{\alpha} e^{\alpha \cdot(t x+(1-t) y)}\right| \leq M \quad \text { when } \quad 0 \leq t \leq 1 .
$$

Therefore the logarithmic image is indeed convex.

Math 650-600

Preview of coming attraction

Theorem. A complete Reinhardt domain is a convergence domain for some power series if and only if the domain is logarithmically convex.

We have already established that a convergence domain is logarithmically convex.
The remaining problem is: given a complete logarithmically convex Reinhardt domain, construct a power series whose domain of convergence is the given domain.

Exercise. Find an explicit power series whose convergence domain is the unit ball in \mathbb{C}^{n} : namely, the set of points $\left(z_{1}, \ldots, z_{n}\right)$ for which $\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}<1$.

Definition of holomorphic function

Suppose that Ω is an open set in \mathbb{C}^{n}.
Theorem (and definition). If $f: \Omega \rightarrow \mathbb{C}$ has continuous first partial derivatives in the underlying real variables, then the following properties are equivalent (and this is easy to see).
A function satisfying these properties is called holomorphic.

1. In each open polydisc contained in Ω, the function f is represented by an absolutely convergent power series.
2. In each polydisc whose closure is contained in Ω, the function f is represented by the iterated Cauchy integral:

$$
f\left(z_{1}, \ldots, z_{n}\right)=\left(\frac{1}{2 \pi i}\right)^{n} \oint \cdots \oint \frac{f\left(\zeta_{1}, \ldots, \zeta_{n}\right)}{\left(\zeta_{1}-z_{1}\right) \cdots\left(\zeta_{n}-z_{n}\right)} d \zeta_{1} \cdots d \zeta_{n}
$$

3. The function f satisfies the Cauchy-Riemann equations in each variable.

Math 650-600
January 25, 2005 - slide \#6

Some analogues of one-variable theory

- A holomorphic function has continuous partial derivatives of all orders.
- A holomorphic function in a polydisc (centered at 0) is represented by the power series $\sum_{\alpha} \frac{f^{(\alpha)}(0)}{\alpha!} z^{\alpha}$.
- Identity theorem. Two holomorphic functions on a connected open set agree identically as soon as they agree on some open subset.
- Maximum principle. The modulus of a non-constant holomorphic function on a connected open set cannot attain a maximum.
- Exercise: Cauchy's estimates for derivatives. If f is holomorphic in the polydisc $\left\{z \in \mathbb{C}^{n}\right.$: $\left|z_{j}\right|<r_{j}$ for $\left.1 \leq j \leq n\right\}$, and if $|f|$ is bounded by a constant M, then $\left|f^{(\alpha)}(0)\right| \leq M \alpha!/ r^{\alpha}$.

