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Robert S. Smith (Miami University)

Boolean Algebra and Switching Circuits
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Announcement

Next week I will be traveling to Washington.

Our class will meet on February 1 (Tuesday)
but will not meet on February 3 (Thursday).
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Reminders from last time

Convergence domains for power series are logarithmically convex complete Reinhardt (multi-
circular) domains.

A function with continuous (real) partial derivatives is holomorphic if (a) it is represented lo-
cally by an absolutely convergent power series, or (b) is represented locally by the iterated
Cauchy integral formula, or (c) satisfies the Cauchy-Riemann equations in each variable sepa-
rately.
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A technical result

Theorem (Hartogs). If f : Ω → C is holomorphic in each variable separately
(with the other variables held fixed), then f is holomorphic.
In particular, a separately holomorphic function is automatically continuous in
all variables jointly.

Friedrich
Hartogs

(1874-1943)

Proofs may be found in the books by Hörmander, by Krantz, and by Narasimhan.
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The Hartogs phenomenon: version 1

Every holomorphic function in a complete Reinhardt domain automatically extends to be a
holomorphic function on the logarithmically convex envelope of the given domain.
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The Hartogs phenomenon: version 2

Every holomorphic function in a connected (not necessarily complete) Reinhardt domain con-
taining 0 automatically extends to be a holomorphic function on the logarithmically convex
complete envelope of the given domain.
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Proof of version 2

Notation: for each point w in the given domain, let Tw denote the torus generated by w: namely,
the set of points (eiθ1w1, . . . , eiθn wn) as the angles θ1, . . . , θn vary independently.

Given a holomorphic function f , form its iterated Cauchy integral over the torus Tw.

This integral is independent of w because the set of points w for which the integral agrees with f
near the origin is non-empty, open, and closed.

Thus the iterated Cauchy integral defines a holomorphic extension of the function to the “com-
plete envelope”.
From version 1, we already know that the function extends from the complete envelope to the
logarithmically convex envelope.
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