Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Exercises from last time

Are the following subsets of the unit bidisc D^2 domains of holomorphy? polynomially convex?

1. $D^2 \setminus \{ (x,0) : 0 \le x \}$ 2. $D^2 \setminus \{ (x,0) : -1 < x < 1 \}$ 3. $D^2 \setminus \{ (z_1,0) : 0 \le \operatorname{Re} z_1 \}$ 4. $D^2 \setminus \{ (z_1,0) : |z_1| < 1 \}$

Math 650-600

March 10, 2005 — slide #2

Reminders on subharmonic functions

A continuous (or upper semi-continuous) function u on a domain Ω in \mathbb{C} is *subharmonic* if u satisfies any of the following equivalent properties.

- 1. Maximum principle: whenever *h* is a harmonic function on a closed disc in Ω , if $u \le h$ on the boundary of the disc, then $u \le h$ everywhere on the disc.
- 2. Sub-mean-value property:

$$u(a) \leq \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{i\theta}) \, d\theta$$

whenever the closed disc D(a, r) is contained in Ω .

3. Non-negative Laplacian: $\Delta u \ge 0$ in Ω .

(If *u* is not twice differentiable, the third property may be interpreted in the sense of distributions.)

Example: if *f* is holomorphic, then $\log |f|$ is subharmonic.

Math 650-600

March 10, 2005 — slide #3

Plurisubharmonic functions

A continuous (or upper semi-continuous) function u on a domain Ω in \mathbb{C}^n is *plurisubharmonic* if the restriction of u to every complex line is subharmonic: namely, for every point a in Ω and every direction b the function $\lambda \mapsto u(a + b\lambda)$ of the complex variable λ is subharmonic (where defined).

Example/Exercise. The function $\log(1 + |z_1|^2 + |z_2|^2)$ is plurisubharmonic in \mathbb{C}^2 .

Property (3) for subharmonic functions implies that u is plurisubharmonic if and only if the $n \times n$ Hermitian matrix $\frac{\partial^2 u}{\partial z_j \partial \overline{z}_k}$ is positive semi-definite: $\sum_{j=1}^n \sum_{k=1}^n \frac{\partial^2 u}{\partial z_j \partial \overline{z}_k} t_j \overline{t}_k \ge 0$ for all vectors t in \mathbb{C}^n .

Math 650-600

March 10, 2005 — slide #4