Math 650-600: Several Complex Variables

Harold P. Boas

boas@tamu.edu

Exercises from last time

Are the following subsets of the unit bidisc D^{2} domains of holomorphy? polynomially convex?

1. $D^{2} \backslash\{(x, 0): 0 \leq x\}$
2. $D^{2} \backslash\{(x, 0):-1<x<1\}$
3. $D^{2} \backslash\left\{\left(z_{1}, 0\right): 0 \leq \operatorname{Re} z_{1}\right\}$
4. $D^{2} \backslash\left\{\left(z_{1}, 0\right):\left|z_{1}\right|<1\right\}$

Reminders on subharmonic functions

A continuous (or upper semi-continuous) function u on a domain Ω in \mathbb{C} is subharmonic if u satisfies any of the following equivalent properties.

1. Maximum principle: whenever h is a harmonic function on a closed disc in Ω, if $u \leq h$ on the boundary of the disc, then $u \leq h$ everywhere on the disc.
2. Sub-mean-value property:

$$
u(a) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+r e^{i \theta}\right) d \theta
$$

whenever the closed disc $D(a, r)$ is contained in Ω.
3. Non-negative Laplacian: $\Delta u \geq 0$ in Ω.
(If u is not twice differentiable, the third property may be interpreted in the sense of distributions.)

Example: if f is holomorphic, then $\log |f|$ is subharmonic.

Plurisubharmonic functions

A continuous (or upper semi-continuous) function u on a domain Ω in \mathbb{C}^{n} is plurisubharmonic if the restriction of u to every complex line is subharmonic: namely, for every point a in Ω and every direction b the function $\lambda \mapsto u(a+b \lambda)$ of the complex variable λ is subharmonic (where defined).

Example/Exercise. The function $\log \left(1+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$ is plurisubharmonic in \mathbb{C}^{2}.
Property (3) for subharmonic functions implies that u is plurisubharmonic if and only if the $n \times n$ Hermitian matrix $\frac{\partial^{2} u}{\partial z_{j} \partial \bar{z}_{k}}$ is positive semi-definite: $\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} u}{\partial z_{j} \partial \bar{z}_{k}} t_{j} \bar{t}_{k} \geq 0$ for all vectors t in \mathbb{C}^{n}.

