Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Recap from last time

Continuity principle, version II: If $\{D_t\}_{t \in [0,1]}$ is a continuous family of analytic discs in \mathbb{C}^n , if the boundaries of the discs are contained in Ω , and if $D_0 \subset \Omega$, then $D_t \subset \Omega$ for every *t*.

Pending theorem. The following properties of a domain Ω in \mathbb{C}^n are equivalent.

1. Ω is convex with respect to plurisubharmonic functions.

2. $z \mapsto -\log \operatorname{dist}(z, b\Omega)$ is plurisubharmonic.

3. A continuous plurisubharmonic exhaustion function exists.

To show that (1) \Rightarrow (2), we reduced to showing, for arbitrary *a*, *b*, and *c* in \mathbb{C}^n , that $-\log d_c(a + b\lambda)$ is subharmonic, where $d_c(z)$ denotes the distance to the boundary of Ω in the direction *c*.

Math 650-600

March 29, 2005 — slide #2

Proof continued

Suppose *D* is a closed disc in \mathbb{C} such that $a + b\lambda \in \Omega$ when $\lambda \in D$. We need to show that if *h* is a harmonic function in *D* such that $-\log d_c(a + b\lambda) \leq h(\lambda)$ when λ is in the boundary of *D*, then the same inequality holds for λ inside *D*.

Without loss of generality, we may assume that *D* is the unit disc, a = 0, and h = Re f where *f* is holomorphic.

Math 650-600

March 29, 2005 — slide #3

Proof concluded

The inequality $-\log d_c(b\lambda) \leq \operatorname{Re} f(\lambda)$ may be rewritten as $|e^{-f(\lambda)}| \leq d_c(b\lambda)$. Equivalently, $b\lambda + \mu c e^{-f(\lambda)} \in \Omega$ when $|\mu| < 1$. By hypothesis, this holds when $|\lambda| = 1$, and we want to show it holds for $|\lambda| < 1$.

View $b\lambda + \mu ce^{-f(\lambda)}$ as a continuous family of analytic discs in λ parametrized by μ . Let r be an arbitrary positive number such that r < 1.

The hypothesis implies that the boundaries of all the discs for which $|\mu| \le r$ lie in (a compact subset of) Ω . When $\mu = 0$, the whole disc is a (compact) subset of Ω by hypothesis.

By version II of the continuity principle, $b\lambda + \mu ce^{-f(\lambda)} \in \Omega$ when $|\mu| \le r$ and $|\lambda| \le 1$. Since *r* is an arbitrary number less than 1, we are done.

Math 650-600

March 29, 2005 — slide #4

Exercises on pseudoconvexity

Without using the solution of the Levi problem, show that pseudoconvexity is preserved under the following set operations.

- 1. taking Cartesian products
- 2. taking increasing unions
- 3. taking a connected component of the interior of an intersection

Remark. After the solution of the Levi problem, item (2) has the Behnke-Stein theorem as an immediate consequence.

Math 650-600

March 29, 2005 — slide #5