Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Exercises on pseudoconvexity

Without using the solution of the Levi problem, show that pseudoconvexity is preserved under the following set operations.

1. Taking Cartesian products: because a compact set *K* is contained in a product $K_1 \times K_2$, and $\widehat{K_1 \times K_2} \subseteq \widehat{K_1} \times \widehat{K_2}$.

2. Taking increasing unions: use version II of the continuity principle; or realize $-\log \operatorname{dist}(z, b\Omega)$ as a decreasing limit of plurisubharmonic functions.

3. Taking a connected component of the interior of an intersection: realize $-\log \operatorname{dist}(z, b\Omega)$ as $\sup_{\alpha}(-\log \operatorname{dist}(z, b\Omega_{\alpha}))$.

Math 650-600

March 31, 2005 — slide #2

Pseudoconvexity is a local property

Theorem. If every boundary point of a domain Ω in \mathbb{C}^n has a neighborhood U such that every component of $U \cap \Omega$ is pseudoconvex, then Ω is pseudoconvex.

Proof. If *B* is a ball contained in *U* centered at a boundary point of Ω , and *z* is in a concentric ball of half the radius, then dist(*z*, *b* Ω) = dist(*z*, *b*(*U* $\cap \Omega$)).

Consequently, if $z \in \Omega_j$ (where Ω_j is a certain component of $U \cap \Omega$), then dist $(z, b\Omega) = dist(z, b\Omega_j)$, so the plurisubharmonicity of $-\log dist(z, b\Omega_j)$ implies the plurisubharmonicity of $-\log dist(z, b\Omega)$ in a neighborhood of the boundary of Ω .

To get a plurisubharmonic exhaustion function for Ω , take max $(-\log \operatorname{dist}(z, b\Omega), \varphi(z))$, where φ is a large constant if Ω is bounded, and φ is a rapidly increasing convex function of $|z|^2$ if Ω is unbounded.

Math 650-600

March 31, 2005 — slide #3

The Levi form

Suppose that a piece of the boundary of Ω is a class C^2 real hypersurface; equivalently, there is a local real-valued *defining function* ρ such that $\rho < 0$ inside Ω , on the boundary $\rho = 0$, and $\rho > 0$ outside the closure of Ω ; and ρ is twice continuously differentiable, and the gradient of ρ is not equal to zero anywhere on the boundary of Ω .

Theorem. Pseudoconvexity is equivalent to a local differential-geometric property of the boundary of Ω : namely, for each boundary point *a*,

$$\sum_{j,k=1}^{n} \frac{\partial^2 \rho}{\partial z_j \partial \overline{z}_k}(a) t_j \overline{t}_k \ge 0 \qquad \text{whenever } \sum_{j=1}^{n} \frac{\partial \rho}{\partial z_j}(a) t_j = 0.$$

The condition does *not* mean that ρ is plurisubharmonic, for the inequality holds only when *t* is a *complex tangent vector*.

Math 650-600

March 31, 2005 — slide #4