Math 650-600: Several Complex Variables

Harold P. Boas boas@tamu.edu

Announcement

Math Club movie

The Dalí Dimension

3:00 PM, Wednesday, May 4

Blocker 156

Math 650-600

May 3, 2005 — slide #2

Solving $\overline{\partial}$: the final step

We have solved the $\overline{\partial}$ -equation by proving the key estimate

$$\|f\|_{\varphi_2} \le \|\overline{\partial}^* f\|_{\varphi_1} + \|\overline{\partial} f\|_{\varphi_3}$$

for smooth, compactly supported *f* on a pseudoconvex domain Ω . The $C^{\infty}(\Omega)$ functions φ_1 , φ_2 , and φ_3 are given in terms of two auxiliary functions φ and ψ by $\varphi_3 = \varphi$, $\varphi_2 = \varphi - \psi$, and $\varphi_1 = \varphi - 2\psi$. The function φ , constructed last time, is a C^{∞} very strongly plurisubharmonic exhaustion function for Ω .

It remains to construct ψ to guarantee density: namely, if f is a (0, 1)-form in Dom $\overline{\partial}^* \cap \text{Dom }\overline{\partial}$, then there exists a sequence $\{f^{(j)}\}_{j=1}^{\infty}$ with coefficients in $C_0^{\infty}(\Omega)$ such that

$$\|f-f^{(j)}\|_{\varphi_2}+\|\overline{\partial}^*f-\overline{\partial}^*f^{(j)}\|_{\varphi_1}+\|\overline{\partial}f-\overline{\partial}f^{(j)}\|_{\varphi_3}\to 0\qquad \text{as }j\to\infty.$$

The strategy is to cut f off and mollify.

Math 650-600

May 3, 2005 — slide #3

Choice of ψ

We will use below the condition $\varphi_3 - \varphi_2 = \psi = \varphi_2 - \varphi_1$.

Choose functions η_j in $C_0^{\infty}(\Omega)$ such that $0 \le \eta_j(z) \le 1$ for all z and $\eta_j(z) = 1$ when dist $(z, b\Omega) \ge 1/j$. Define $\psi \in C^{\infty}(\Omega)$ via $e^{\psi} = 1 + \sum_{j=1}^{\infty} |\nabla \eta_j|^2$ (locally finite sum).

Density, step 1. If $f \in L^2(\Omega, \varphi_2)$, then $\eta_j f \to f$ in $L^2(\Omega, \varphi_2)$ by the dominated convergence theorem for Lebesgue integrals. If $f \in \text{Dom }\overline{\partial}$, then similarly $\eta_j \overline{\partial} f \to \overline{\partial} f$ in $L^2(\Omega, \varphi_3)$, and if $f \in \text{Dom }\overline{\partial}^*$, then $\eta_j \overline{\partial}^* f \to \overline{\partial}^* f$ in $L^2(\Omega, \varphi_1)$.

Density, step 2. By step 1, showing that $\overline{\partial}(\eta_j f) \to \overline{\partial} f$ in $L^2(\Omega, \varphi_3)$ is equivalent to showing that $\|\overline{\partial}(\eta_j f) - \eta_j \overline{\partial} f\|_{\varphi_3} \to 0$. The square of this norm is $\leq \int_{\Omega} |\overline{\partial}\eta_j|^2 |f|^2 e^{-\varphi_3}$. By the choice of ψ , this integral tends to 0 by dominated convergence since $|\overline{\partial}\eta_j|^2 |f|^2 e^{-\varphi_3} \leq e^{\psi} |f|^2 e^{-\varphi_3} = |f|^2 e^{-\varphi_2}$, and $f \in L^2(\Omega, \varphi_2)$.

Math 650-600

May 3, 2005 — slide #4

More on density

Density, step 3. For compactly supported f, convolve with mollifiers to get f_{ϵ} with coefficients in $C_0^{\infty}(\Omega)$ such that $f_{\epsilon} \to f$ and $\overline{\partial} f_{\epsilon} \to \overline{\partial} f$. Since $\overline{\partial}$ is a differential operator with *constant coefficients*, it commutes with convolution: $\overline{\partial}(f_{\epsilon}) = (\overline{\partial} f)_{\epsilon}$.

Density, step 4. Since $\overline{\partial}^* f = \sum_{j=1}^n e^{\varphi_1} \frac{\partial}{\partial z_j} (e^{-\varphi_2} f_j)$, we have $|\overline{\partial}^*(\eta_j f) - \eta_j \overline{\partial}^* f| \le e^{\varphi_1 - \varphi_2} |\partial \eta_j| |f| \le e^{(\varphi_1 - \varphi_2)/2} |f|$ (by the choice of ψ again). Then $|\overline{\partial}^*(\eta_j f) - \eta_j \overline{\partial}^* f|^2 e^{-\varphi_1} \le |f|^2 e^{-\varphi_2}$, so by dominated convergence $\overline{\partial}^*(\eta_j f) \to \overline{\partial}^* f$ in $L^2(\Omega, \varphi_1)$.

Density, step 5. Since $e^{\psi} \overline{\partial}^*$ differs from a constant-coefficient differential operator by a multiplication operator M, we have for compactly supported f that $(e^{\psi} \overline{\partial}^* + M)(f_{\epsilon}) = ((e^{\psi} \overline{\partial}^* + M)f)_{\epsilon} \rightarrow (e^{\psi} \overline{\partial}^* + M)f$. Since $M(f_{\epsilon}) \rightarrow Mf$, it follows that $e^{\psi} \overline{\partial}^*(f_{\epsilon}) \rightarrow e^{\psi} \overline{\partial}^*f$, and hence $\overline{\partial}^*(f_{\epsilon}) \rightarrow \overline{\partial}^*f$. We are done.

Math 650-600

May 3, 2005 — slide #5

Summary

Our main result for the semester is the equivalence of the following properties of a domain Ω in \mathbb{C}^n .

- Ω is a domain of holomorphy.
- There is a holomorphic function on Ω for which *b*Ω is the natural boundary.
- Ω is holomorphically convex.
- ∀K ⊂⊂ Ω, the holomorphic hull *K* satisfies dist(*K*, bΩ) = dist(*K*, bΩ).
- ∀ sequence in Ω with no accumulation point in Ω,
 ∃ a holomorphic function on Ω that is unbounded on the sequence.

Math 650-600

- Ω is convex with respect to the plurisubharmonic functions.
- $-\log \operatorname{dist}(z, b\Omega)$ is plurisubharmonic.
- Ω admits a continuous plurisubharmonic exhaustion function.
- Ω admits a *C*[∞] strongly plurisubharmonic exhaustion function.
- Ω satisfies the continuity principle for families of analytic discs.

May 3, 2005 — slide #6

Additional equivalences

- In case Ω has class C² boundary, the Levi form is non-negative on complex tangent vectors.
- Solvability of the $\overline{\partial}$ -equation on forms of arbitrary degree: When $1 \le q \le n$, for every $\overline{\partial}$ -closed (0,q)-form f with coefficients in $C^{\infty}(\Omega)$, there exists a (0,q-1)-form u with coefficients in $C^{\infty}(\Omega)$ such that $\overline{\partial}u = f$.

We proved only that pseudoconvexity implies solvability of the $\overline{\partial}$ -equation on (0,1)-forms, which is all we needed to solve the Levi problem.

Math 650-600