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1 Introduction

Although the great Karl Weierstrass (1815–1897) studied multi-variable power series already in
the nineteenth century, the modern theory of several complex variables dates to the researches of
Friedrich (Fritz) Hartogs (1874–1943) in the first decade of the twentieth century.1 The so-called
Hartogs Phenomenon reveals a dramatic difference between one-dimensional complex analysis
and multi-dimensional complex analysis, a fundamental feature that had eluded Weierstrass.

Some aspects of the theory of holomorphic (complex analytic) functions—the maximum prin-
ciple, for example—are essentially the same in all dimensions. The most interesting parts of the
theory of several complex variables are the features that differ from the one-dimensional theory.
The one-dimensional theory is illuminated by several complementary points of view: power se-
ries, integral representations, partial differential equations, and geometry. The multi-dimensional
theory reveals striking new phenomena from each of these points of view. This chapter sketches
some of the issues that will be treated in detail later on.

1.1 Power series

A one-variable power series converges inside a certain disc and diverges outside the closure
of the disc. The convergence region for a two-dimensional power series, however, can have
infinitely many different shapes. For instance, the largest open set in which the double seriesP1
nD0

P1
mD0 ´

nwm converges is the unit bidisc f .´; w/ W j´j < 1 and jwj < 1 g, while the seriesP1
nD0 ´

nwn converges in the unbounded hyperbolic region where j´wj < 1.
The theory of one-dimensional power series bifurcates into the theory of entire functions

(when the series has infinite radius of convergence) and the theory of functions on the unit disc
(when the series has a finite radius of convergence, which can be normalized to the value 1). In
higher dimensions, studying power series already leads to function theory on infinitely many dif-
ferent types of domains. A natural question, to be answered later, is to characterize the domains
that are convergence domains for multi-variable power series.

Exercise 1. Exhibit a two-variable power series whose convergence domain is the unit ball
f .´; w/ W j´j2 C jwj2 < 1 g.

1A student of Alfred Pringsheim (1850–1941), Hartogs belonged to the Munich school of mathematicians. Because
of their Jewish heritage, both Pringsheim and Hartogs suffered greatly under the Nazi regime in the 1930s.
Pringsheim, a wealthy man, managed to buy his way out of Germany into Switzerland, where he died at an
advanced age in 1941. The situation for Hartogs, however, grew ever more desperate, and in 1943 he committed
suicide rather than face being sent to a death camp.
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1 Introduction

Hartogs discovered that every function holomorphic in a neighborhood of the boundary of the
unit bidisc automatically extends to be holomorphic on the interior of the bidisc; a proof can be
carried out by considering one-variable Laurent series on slices. Thus, in dramatic contrast to the
situation in one variable, there are domains in C2 on which all the holomorphic functions extend
to a larger domain. A natural question, to be answered later, is to characterize the domains of
holomorphy, that is, the natural domains of existence of holomorphic functions.

The discovery of Hartogs shows too that holomorphic functions of several variables never
have isolated singularities and never have isolated zeroes, in contrast to the one-variable case.
Moreover, zeroes (and singularities) must propagate to infinity or to the boundary of the domain
where the function is defined.

Exercise 2. Let p.´;w/ be a nonconstant polynomial in two variables. Show that the zero set
of p cannot be a compact subset of C2.

1.2 Integral representations

The one-variable Cauchy integral formula for a holomorphic function f on a domain bounded
by a simple closed curve C says that

f .´/ D
1

2�i

Z
C

f .w/

w � ´
dw for ´ inside C :

A remarkable feature of this formula is that the kernel .w � ´/�1 is both universal (independent
of the curve C ) and holomorphic in the free variable ´. There is no such formula in higher
dimensions! There are integral representations with a holomorphic kernel that depends on the
domain, and there is a universal integral representation with a kernel that is not holomorphic.
There is a huge literature about constructing and analyzing integral representations for various
special types of domains.

1.3 Partial differential equations

The one-dimensional Cauchy–Riemann equations are a pair of real partial differential equations
for a pair of functions (the real and imaginary parts of a holomorphic function). In Cn, there are
still two functions, but there are 2n equations. Thus when n > 1, the inhomogeneous Cauchy–
Riemann equations form an overdetermined system; hence there is a necessary compatibility
condition for solvability of the Cauchy–Riemann equations. This feature is a significant differ-
ence from the one-variable theory.

When the inhomogeneous Cauchy–Riemann equations are solvable in C2 (or in higher dimen-
sion), there is (as will be shown later) a solution with compact support in the case of compactly
supported data. When n D 1, however, it is not always possible to solve the inhomogeneous
Cauchy–Riemann equations while maintaining compact support. The Hartogs phenomenon can
be interpreted as a manifestation of this dimensional difference.
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1 Introduction

Exercise 3. Show that if u is the real part of a holomorphic function of two complex variables ´1
(D x1Ciy1) and ´2 (D x2Ciy2), then the function umust satisfy the following real second-order
partial differential equations:

@2u

@x21
C
@2u

@y21
D 0;

@2u

@x22
C
@2u

@y22
D 0;

@2u

@x1@x2
C

@2u

@y1@y2
D 0;

@2u

@x1@y2
D

@2u

@y1@x2
:

Thus the real part of a holomorphic function of two variables not only is harmonic in each
coordinate but also satisfies additional conditions.

1.4 Geometry

In view of the one-variable Riemann mapping theorem, every bounded simply connected planar
domain is biholomorphically equivalent to the unit disc. In higher dimension, there is no such
simple topological classification of biholomorphically equivalent domains. Indeed, the unit ball
in C2 and the unit bidisc in C2 are holomorphically inequivalent domains.

One way to understand intuitively why the situation changes in dimension 2 is to realize that
in C2, there is room for one-dimensional complex analysis to happen in the tangent space to the
boundary of a domain. Indeed, the boundary of the bidisc contains pieces of one-dimensional
complex affine subspaces, while the boundary of the two-dimensional ball does not contain any
such analytic disc.

Similarly, the zero set of a (not identically zero) holomorphic function in C2 is a one-dimensional
complex variety, while the zero set of a holomorphic function in C1 is a zero-dimensional variety
(that is, a discrete set of points).

There is a mismatch between the dimension of the domain and the dimension of the range
of a multi-variable holomorphic function. One might expect an equidimensional holomorphic
mapping to be analogous to a one-variable holomorphic function. Here too there are surprises.
For instance, there exists a biholomorphic mapping from all of C2 onto a proper subset of C2
whose complement has interior points. Such a mapping is called a Fatou–Bieberbach map.2

2The name honors the French mathematician Pierre Fatou (1878–1929) and the German mathematician Ludwig
Bieberbach (1886–1982).
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2 Power series

Examples in the introduction show that the domain of convergence of a multi-variable power
series can have various shapes; in particular, the domain need not be a convex set. Nonetheless,
there is a special kind of convexity property that characterizes convergence domains.

Developing the theory requires some notation. The Cartesian product of n copies of the com-
plex numbers C is denoted by Cn. In contrast to the one-dimensional case, the space Cn is not an
algebra when n > 1 (there is no multiplication operation). But the space Cn is a normed vector
space, the usual norm being the Euclidean one: k.´1; : : : ; ´n/k D

p
j´1j2 C � � � C j´nj2. A point

.´1; : : : ; ´n/ in Cn is commonly denoted by a single letter ´, a vector variable. If ˛ is a point
of Cn all of whose coordinates are non-negative integers, then ´˛ means the product ´˛1

1 � � � ´
˛n
n

(as usual, the quantity ´˛1

1 is interpreted as 1 when ´1 and ˛1 are simultaneously equal to 0), the
notation ˛Š abbreviates the product ˛1Š � � �˛nŠ (where 0Š D 1), and j˛j means ˛1 C � � � C ˛n. In
this “multi-index” notation, a multi-variable power series can be written in the form

P
˛ c˛´

˛,
an abbreviation for

P1
˛1D0
� � �
P1
˛nD0

c˛1;:::;˛n
´
˛1

1 � � � ´
˛n
n .

There is some awkwardness in talking about convergence of a multi-variable power seriesP
˛ c˛´

˛, because the value of a series depends (in general) on the order of summation, and
there is no canonical ordering of n-tuples of non-negative integers when n > 1.

Exercise 4. Find complex numbers b˛ such that the “triangular” sum limk!1

Pk
jD0

P
j˛jDj b˛

and the “square” sum limk!1

Pk
˛1D0
� � �
Pk
˛nD0

b˛ have different finite values.

Accordingly, it is convenient to restrict attention to absolute convergence, since the terms of an
absolutely convergent series can be reordered arbitrarily without changing the value of the sum
(or the convergence of the sum).

2.1 Domain of convergence

The domain of convergence of a power series means the interior of the set of points at which
the series converges absolutely.1 For example, the set where the two-variable power seriesP1
nD1 ´

nwnŠ converges absolutely is the union of three sets: the points .´; w/ for which jwj < 1
and ´ is arbitrary, the points .0; w/ for arbitrary w, and the points .´; w/ for which jwj D 1 and
j´j < 1. The domain of convergence is the first of these three sets; the other two sets contribute
no additional interior points.

1Usually the domain of convergence is assumed implicitly to be non-void. Ordinarily one would not speak of the
domain of convergence of the series

P1
nD1 nŠ ´

nwn.

4



2 Power series

Since convergence domains are defined by considering absolute convergence, it is evident that
every convergence domain is multi-circular: if a point .´1; : : : ; ´n/ is in the domain, then so is
every point .�1´1; : : : ; �n´n/ such that j�1j D � � � D j�nj D 1. Moreover, the comparison test for
absolute convergence of series shows that the point .�1´1; : : : ; �n´n/ is still in the convergence
domain when j�j j � 1 for each j . Thus every convergence domain is a union of polydiscs
centered at the origin. (A polydisc means a Cartesian product of discs, possibly with different
radii.)

A multi-circular domain is often called a Reinhardt domain.2 Such a domain is called complete
if whenever a point ´ is in the domain, then the polydisc fw W jw1j � j´1j; : : : ; jwnj � j´nj g is
in the domain too. The preceding discussion can be rephrased as saying that every convergence
domain is a complete Reinhardt domain.

But more is true. If both
P
˛ jc˛´

˛j and
P
˛ jc˛w

˛j converge, then Hölder’s inequality implies
that

P
˛ jc˛jj´

˛jt jw˛j1�t converges when 0 � t � 1. Indeed, the numbers 1=t and 1=.1 � t /
are conjugate indices for Hölder’s inequality: the sum of their reciprocals evidently equals 1. In
other words, if ´ and w are two points in a convergence domain, then so is the point obtained
by forming in each coordinate the geometric average (with weights t and 1 � t ) of the moduli.
This property of a Reinhardt domain is called logarithmic convexity. Since a convergence do-
main is complete and multi-circular, the domain is determined by the points with positive real
coordinates; replacing the coordinates of each such point by their logarithms produces a convex
domain in Rn.

2.2 Characterization of domains of convergence

The following theorem3 gives a geometric characterization of domains of convergence of power
series.

Theorem 1. A complete Reinhardt domain in Cn is the domain of convergence of some power
series if and only if the domain is logarithmically convex.

2The name honors the German mathematician Karl Reinhardt (1895–1941), who studied such regions. Reinhardt
has a place in mathematical history for solving Hilbert’s 18th problem in 1928: he found a polyhedron that tiles
three-dimensional Euclidean space but is not the fundamental domain of any group of isometries of R3. In other
words, there is no group such that the orbit of the polyhedron under the group covers R3, yet non-overlapping
isometric images of the tile do cover R3. Later, Heinrich Heesch found a two-dimensional example; Heesch is
remembered for pioneering computer methods for attacking the four-color problem.

The date of Reinhardt’s death does not mean that he was a war casualty: his obituary says to the contrary that
he died after a long illness of unspecified nature.

Reinhardt was a professor in Greifswald, a city in northeastern Germany on the Baltic Sea. The University
of Greifswald, founded in 1456, is one of the oldest in Europe. Incidentally, Greifswald is a sister city of
Bryan–College Station.

3Fritz Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere
über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Mathe-
matische Annalen 62 (1906), no. 1, 1–88. (Hartogs considered domains in C2.)
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2 Power series

Proof. The preceding discussion shows that a convergence domain is necessarily logarithmically
convex. What remains to prove is that if D is a logarithmically convex complete Reinhardt do-
main, then there exists some power series

P
˛ c˛´

˛ whose domain of convergence isD. Suppose
initially that the domain D is bounded, for the construction is easier to implement in that case.
The idea is to construct a series that can be compared with a geometric series.

Let N˛.D/ denote supf j´˛j W ´ 2 D g, the supremum norm on D of the monomial with
exponent ˛. The hypothesis of boundedness of the domain D guarantees that N˛.D/ is finite.
The claim is that

P
˛ ´

˛=N˛.D/ is the required power series whose domain of convergence is
equal to D. What needs to be checked is that for each point w inside D, the series converges
absolutely atw, and for each pointw outsideD, there is no neighborhood ofw throughout which
the series converges absolutely.

If w is a particular point in the interior of D, then w is in the interior of some open polydisc
contained in D, say of polyradius .r1; : : : ; rn/. If � denotes max1�j�n jwj j=rj , then 0 < � < 1,
and jw˛j=N˛.D/ � �j˛j. Therefore the series

P
˛ w

˛=N˛.D/ converges absolutely by compar-
ison with the convergent dominating series

P
˛ �
j˛j (which is a product of convergent geometric

series). Thus the first half of the claim is valid.
To check the second half of the claim, it suffices to show that the series

P
˛ j´

˛j=N˛.D/

diverges at an arbitrary point w outside the closure of D whose coordinates are positive real
numbers. (Why can one reduce to this case? SinceD is multicircular, there is no loss of general-
ity in supposing that the coordinates of w are nonnegative real numbers, and since convergence
domains are open sets, there is no loss of generality in supposing that the coordinates of w are
strictly positive.) The strategy is to show that infinitely many terms of the series are greater than 1
at w.

The hypothesis that D is logarithmically convex means precisely that the set

f .u1; : : : ; un/ 2 Rn W .eu1; : : : ; eun/ 2 D g; denoted logD,

is a convex set in Rn. By assumption, the point .logw1; : : : ; logwn/ is a point of Rn outside the
closure of the convex set logD, so this point can be separated from logD by a hyperplane. In
other words, there is a linear function ` W Rn ! R whose value at the point .logw1; : : : ; logwn/
exceeds the supremum of ` over the convex set logD. (In particular, that supremum is finite.)
Suppose that `.u1; : : : ; un/ D ˇ1u1 C � � � C ˇnun for every point .u1; : : : ; un/, where the coef-
ficients ǰ are certain real constants.

The hypothesis thatD is a complete Reinhardt domain implies thatD contains a neighborhood
of the origin in Cn, so there is a positive real constant m such that the convex set logD contains
every point u in Rn for which max1�j�n uj � �m. Therefore none of the numbers ǰ can be
negative, for otherwise the function ` would take arbitrarily large positive values on logD. The
assumption that D is bounded produces a positive real constant M such that logD is contained
in the set of points u in Rn such that max1�j�n uj � M . Consequently, if each number ǰ is
increased by some small positive amount �, then the supremum of ` over logD increases by
no more than nM�. Therefore the coefficients of the function ` can be perturbed slightly, and
` will remain a separating function. Accordingly, there is no loss of generality in assuming that

6



2 Power series

each ǰ is a positive rational number. Multiplying by a common denominator shows that the
coefficients ǰ can be taken to be positive integers.

Exponentiating reveals that wˇ > Nˇ .D/ for the particular multi-index ˇ just determined.
(Since the coordinates of w are positive real numbers, no absolute-value signs are needed on
the left-hand side of the inequality.) It follows that if k is a positive integer, and kˇ denotes
the multi-index .kˇ1; : : : ; kˇn/, then wkˇ > Nkˇ .D/. Consequently, the series

P
˛ w

˛=N˛.D/

diverges, for there are infinitely many terms larger than 1. This conclusion completes the proof
of the theorem in the special case that the domain D is bounded.

When D is unbounded, let Dr denote the intersection of D with the ball of radius r centered
at the origin. Then Dr is a bounded, complete, logarithmically convex Reinhardt domain, and
the preceding analysis applies to Dr . It will not work, however, to splice together power series
of the type just constructed for an increasing sequence of values of r , for none of these series
converges throughout the unbounded domain D.

One way to finish the argument (and to advertise coming attractions) is to apply a famous the-
orem of H. Behnke and K. Stein (usually called the Behnke–Stein theorem), according to which
an increasing union of domains of holomorphy is again a domain of holomorphy.4 Section 2.4
will show that a convergence domain for a power series supports some (other) power series that
cannot be analytically continued across any boundary point whatsoever. Hence each Dr is a
domain of holomorphy, and the Behnke–Stein theorem implies that D is a domain of holomor-
phy. Thus D supports some holomorphic function that cannot be analytically continued across
any boundary point of D. This holomorphic function will be represented by a power series that
converges in all of D, and D will be the convergence domain of this power series.

The argument in the preceding paragraph is unsatisfying because, besides being anachronistic
and not self-contained, it provides no concrete construction of the required power series. What
follows is a nearly concrete argument for the case of an unbounded domain that is based on the
same idea as the proof for bounded domains.

Consider the countable set of points outside the closure of D whose n coordinates all are
positive rational numbers. (There are such points unlessD is the whole space, in which case there
is nothing to prove.) Make a redundant list fw.j /g1jD1 of these points, each point appearing in the
list infinitely often. Since the domain Dj is bounded, the first part of the proof provides a multi-
index ˇ.j / of positive integers such that w.j /ˇ.j / > Nˇ.j /.Dj /. Multiplying this multi-index
by a positive integer gives another multi-index with the same property, so it may be assumed that
jˇ.j C 1/j > jˇ.j /j for every j . The claim is that

1X
jD1

´ˇ.j /

Nˇ.j /.Dj /
(2.1)

is a power series whose domain of convergence is D.
First of all, the indicated series is a power series, since no two of the multi-indices ˇ.j / are

equal (so there are no common terms in the series that need to be combined). A point ´ in the
4H. Behnke and K. Stein, Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexität, Math-

ematische Annalen 116 (1938) 204–216.
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2 Power series

interior ofD is inside the bounded domainDk for some value of k, andN˛.Dj / > N˛.Dk/when
j > k. Therefore the sum of absolute values of terms in the tail of the series (2.1) is dominated
by
P
˛ j´

˛j=N˛.Dk/, and the latter series converges for the specified point ´ inside Dk by the
argument in the first part of the proof. Thus the convergence domain of the indicated series is at
least as large as D.

On the other hand, if the series were to converge absolutely in some neighborhood of a point
outside D, then the series would converge at some point � outside the closure of D having
positive rational coordinates. Since there are infinitely many values of j for which w.j / D �,
the series

1X
jD1

�ˇ.j /

Nˇ.j /.Dj /

has (by construction) infinitely many terms larger than 1, and so diverges. Thus the convergence
domain of the constructed series is no larger than D.

In conclusion, every logarithmically convex, complete Reinhardt domain, whether bounded or
unbounded, is the domain of convergence of some power series.

Exercise 5. Every bounded, complete Reinhardt domain in C2 can be described as the set of
points .´1; ´2/ for which

j´1j < r and j´2j < e
�'.j´1j/;

where r is some positive real number, and ' is some nondecreasing, real-valued function. Show
that such a domain is logarithmically convex if and only if the function ´1 7! '.j´1j/ is subhar-
monic on the disk where j´1j < r .

2.3 Elementary properties of holomorphic functions

Convergent power series are the local models for holomorphic functions. A reasonable working
definition of a holomorphic function of several complex variables is a function (on an open set)
that is holomorphic in each variable separately (when the other variables are held fixed) and
continuous in all variables jointly.5

If D is a polydisc in Cn, say of polyradius .r1; : : : ; rn/, whose closure is contained in the
domain of definition of a function f that is holomorphic in this sense, then iterating the one-
dimensional Cauchy integral formula shows that

f .´/ D

�
1

2�i

�n Z
jw1jDr1

: : :

Z
jwnjDrn

f .w1; : : : ; wn/

.w1 � ´1/ � � � .wn � ´n/
dw1 � � � dwn

when the point ´ with coordinates .´1; : : : ; ´n/ is in the interior of the polydisc. (The assumed
continuity of f guarantees that this iterated integral makes sense and can be evaluated in any
order by Fubini’s theorem.)

5It is a surprising result of Hartogs that the continuity hypothesis is superfluous. See Section 2.7.
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2 Power series

By expanding the Cauchy kernel in a power series, one finds from the iterated Cauchy formula
(just as in the one-variable case) that a holomorphic function in a polydisc admits a power series
expansion that converges in the (open) polydisc. If the series representation is

P
˛ c˛´

˛, then
the coefficient c˛ is uniquely determined as f .˛/.0/=˛Š, where the symbol f .˛/ abbreviates the
derivative @j˛jf=@´˛1

1 � � � @´
˛n
n . Every complete Reinhardt domain is a union of polydiscs, so the

uniqueness of the coefficients c˛ implies that every holomorphic function in a complete Rein-
hardt domain admits a power series expansion that converges in the whole Reinhardt domain.
Thus holomorphic functions and convergent power series are identical notions in complete Rein-
hardt domains.

By the same arguments as in the single-variable case, the iterated Cauchy formula suffices to
establish standard local properties of holomorphic functions. For example, holomorphic func-
tions are infinitely differentiable, satisfy the Cauchy–Riemann equations in each variable, obey
a local maximum principle, and admit local power series expansions.

An identity principle for holomorphic functions of several variables is valid, but the statement
is different from the usual one-variable statement. Zeroes of holomorphic functions of more than
one variable are never isolated, so requiring an accumulation point of zeroes puts no restriction
on the function. The following exercise is a correct version of the identity principle for functions
of several variables.

Exercise 6. If f is holomorphic on a connected open setD in Cn, and f is identically equal to 0
on some ball contained in D, then f is identically equal to 0 on D.

The iterated Cauchy integral suffices to show that if a sequence of holomorphic functions
converges normally (uniformly on compact sets), then the limit function is holomorphic. Indeed,
the conclusion is a local property that can be checked on small polydiscs, and the locally uniform
convergence implies that the limit of the iterated Cauchy integrals equals the iterated Cauchy
integral of the limit function. On the other hand, the one-variable integral that counts zeroes
inside a curve lacks a multi-variable analogue (the zeroes are not isolated), so one needs to check
that Hurwitz’s theorem generalizes from one variable to several variables.

Exercise 7. Prove a multi-dimensional version of Hurwitz’s theorem: On a connected open set,
the normal limit of nowhere-zero holomorphic functions is either nowhere zero or identically
equal to zero.

2.4 Natural boundaries

Although the one-dimensional power series
P1
kD0 ´

k has the unit disc as its convergence domain,
the function represented by the series, which is 1=.1 � ´/, extends holomorphically across most
of the boundary of the disc. On the other hand, there exist power series that converge in the
unit disc and have the unit circle as “natural boundary,” meaning that the function represented
by the series does not continue analytically across any boundary point of the disc. (One example
is the gap series

P1
kD1 ´

2k

, which on a dense of radii has an infinite limit at the boundary.) The

9



2 Power series

following theorem6 says that in higher dimensions too, every convergence domain (that is, every
logarithmically convex, complete Reinhardt domain) is the natural domain of existence of some
holomorphic function.

Theorem 2 (Cartan–Thullen). The domain of convergence of a multi-variable power series is a
domain of holomorphy. More precisely, for every domain of convergence there exists some power
series that converges in the domain and that is singular at every boundary point.

The word “singular” does not necessarily mean that the function blows up. To say that a power
series is singular at a boundary point of its domain of convergence means that the series does not
admit a direct analytic continuation to a neighborhood of the point. A function whose modulus
tends to infinity at a boundary point is singular at that point, but so is a function whose modulus
tends to zero exponentially fast.

To illustrate some useful techniques, I shall give two proofs of the theorem (different from the
original proof). Both proofs are nonconstructive. The arguments show the existence of many
noncontinuable series without actually exhibiting a concrete one.

Proof of Theorem 2 using the Baire category theorem. LetD be the domain of convergence (as-
sumed nonvoid) of a power series

P
˛ c˛´

˛. Since the two series
P
˛ c˛´

˛ and
P
˛ jc˛j´

˛ have
the same region of absolute convergence, there is no loss of generality in assuming from the
outset that the coefficients c˛ are non-negative real numbers.

The topology of uniform convergence on compact sets is metrizable, and the space of holo-
morphic functions on D becomes a complete metric space when provided with this topology.
Hence the Baire category theorem is available. The goal is to prove that the holomorphic func-
tions on D that extend holomorphically across some boundary point form a set of first category
in this metric space. Consequently, there exist power series that are singular at every boundary
point of D; indeed, most power series that converge in D have this property.

A first step toward the goal is a multi-dimensional version of an observation that dates back to
the end of the nineteenth century.
Lemma 1 (Multi-dimensional Pringsheim lemma). If a power series

P
˛ c˛´

˛ has real, non-
negative coefficients c˛, then the series is singular at every boundary point .r1; : : : ; rn/ of the
domain of convergence at which all the coordinates rj are positive real numbers.

Proof. Seeking a contradiction, suppose that the holomorphic function f represented by the
series extends holomorphically to a neighborhood of some boundary point r having positive
coordinates. Consider the Taylor series of f about the interior point 1

2
r :

f .´/ D
X
˛

1

˛Š
f .˛/.1

2
r/.´ � 1

2
r/˛:

6Henri Cartan and Peter Thullen, Zur Theorie der Singularitäten der Funktionen mehrerer komplexen
Veränderlichen: Regularitäts- und Konvergenzbereiche, Mathematische Annalen 106, (1932) no. 1, 617–647;
doi:10.1007/BF01455905. See Corollary 1 on page 637 of the cited article.
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By the assumption, this series converges when ´ D r C �1, where 1 D .1; : : : ; 1/, and � is a
sufficiently small positive number. Differentiating the original series shows that

f .˛/.1
2
r/ D

X
ˇ�˛

ˇŠ

.ˇ � ˛/Š
cˇ .

1
2
r/ˇ�˛:

Combining these two expressions shows that the seriesX
˛

X
ˇ�˛

 
ˇ

˛

!
cˇ .

1
2
r/ˇ�˛.1

2
r C �1/˛

converges. Since all the quantities involved are non-negative real numbers, the order of summa-
tion can be interchanged without affecting the convergence; the expression then simplifies to the
series X

ˇ

cˇ .r C �1/ˇ :

This series is the original series for f , now seen to be absolutely convergent in a neighborhood
of the point r . Hence r is not a boundary point of the domain of convergence. The contradiction
shows that f must have been singular at r after all.

In view of the lemma, the power series
P
˛ c˛´

˛ (now assumed to have non-negative coeffi-
cients) is singular at all the boundary points of the domain of convergence having positive real
coordinates. (If there are no boundary points, that is, if D D Cn, then there is nothing to prove.)
If .r1ei�1; : : : ; rne

i�n/ is an arbitrary boundary point having all coordinates non-zero, then the
power series

P
˛ c˛e

�i.˛1�1C���C˛n�n/´˛ is singular at this boundary point. In other words, for
every boundary point having non-zero coordinates, there exists some power series that converges
in D but is singular at that boundary point.

Now choose a countable dense subset fpj g1jD1 of the boundary of D consisting of points
with non-zero coordinates. For arbitrary natural numbers j and k, the space of holomorphic
functions onD[B.pj ; 1=k/ embeds continuously into the space of holomorphic functions onD
via the restriction map. The image of the embedding is not the whole space, for the preceding
discussion produced a power series that does not extend into B.pj ; 1=k/. By a corollary of the
Baire category theorem (dating back to Banach’s famous book7), the image of the embedding
must be of first category (the cited theorem says that if the image were of second category, then
it would be the whole space, which it is not). Thus the set of power series onD that extend some
distance across some boundary point is a countable union of sets of first category, hence itself a
set of first category. Accordingly, most power series that converge in D have the boundary of D
as natural boundary.

7Stefan Banach, Théorie des opérations linéaires, 1932, second edition 1978, currently available through AMS
Chelsea Publishing; English translation Theory of Linear Operations currently available through Dover Publi-
cations. The relevant statement is the first theorem in Chapter 3. For a modern treatment, see section 2.11 of
Walter Rudin’s Functional Analysis; a specialization of the theorem proved there is that a continuous linear map
between Fréchet spaces (locally convex topological vector spaces equipped with complete translation-invariant
metrics) either is an open surjection or has image of first category.
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Proof of Theorem 2 using probability. The idea of the second proof is to show that with proba-
bility 1, a randomly chosen power series that converges in D is noncontinuable.8 As a warm-up,
consider the case of the unit disc in C. Suppose that the series

P1
nD0 cn´

n has radius of con-
vergence equal to 1. The claim is that

P1
nD0˙cn´

n has the unit circle as natural boundary for
almost all choices of the plus-or-minus signs.

The statement can be made precise by introducing the Rademacher functions. When n is a
nonnegative integer, the Rademacher function �n.t/ is defined on the interval Œ0; 1� as follows:

�n.t/ D sgn sin.2n�t/ D

8̂<̂
:

1; if sin.2n�t/ > 0,
�1; if sin.2n�t/ < 0,
0; if sin.2n�t/ D 0.

Alternatively, the Rademacher functions can be described in terms of binary expansions. Suppose
a number t between 0 and 1 is written in binary form as

P1
nD1 an.t/=2

n. Then �n.t/ D 1 �

2an.t/, except for the finitely many rational values of t that can be written with denominator 2n

(which in any case are values of t for which an.t/ is not well defined).
Exercise 8. Show that the Rademacher functions form an orthonormal system in the space
L2Œ0; 1� of square-integrable, real-valued functions. Are the Rademacher functions a complete
orthonormal system?

The Rademacher functions provide a mathematical model for the notion of “random plus and
minus signs.” In the language of probability theory, the Rademacher functions are independent
and identically distributed symmetric random variables. Each function takes the value C1 with
probability 1=2, the value �1 with probability 1=2, and the value 0 on a set of measure zero (in
fact, on a finite set). The intuitive meaning of “independence” is that knowing the value of one
particular Rademacher function gives no information about the value of any other Rademacher
function.

Here is a precise version of the statement about random series being noncontinuable.9

Theorem 3 (Paley–Zygmund). If the power series
P1
nD0 cn´

n has radius of convergence 1, then
for almost every value of t in Œ0; 1�, the power series

P1
nD0 �n.t/cn´

n has the unit circle as
natural boundary.

The words “almost every” mean, as usual, that the exceptional set is a subset of Œ0; 1� having
measure zero. In probabilists’ language, one says that the power series “almost surely” has the
unit circle as natural boundary. Implicit in the conclusion is that the radius of convergence of the
power series

P1
nD0 �n.t/cn´

n is almost surely equal to 1; this property is evident since the radius
of convergence depends only on the moduli of the coefficients in the series, and almost surely
j�n.t/cnj D jcnj for every n.

8A reference for this section is Jean-Pierre Kahane, Some Random Series of Functions, Cambridge University
Press; see especially Chapter 4.

9R. E. A. C. Paley and A. Zygmund, On some series of functions, Proceedings of the Cambridge Philosophical
Society 26 (1930), no. 3, 337–357 (announcement of the theorem without proof); 28 (1932), no. 2, 190–205
(proof of the theorem).
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Proof. It will suffice to show for an arbitrary point p on the unit circle that the set of points t in
the unit interval for which the power series

P1
nD0 �n.t/cn´

n continues analytically across p is a
set of measure zero. Indeed, take a countable set of points fpj g1jD1 that is dense in the unit circle:
the union over j of the corresponding exceptional sets of measure zero is still a set of measure
zero, and when t is in the complement of this set, the power series

P1
nD0 �n.t/cn´

n is nowhere
continuable.

So fix a point p on the unit circle. A technicality needs to be checked: is the set of points t for
which the power series

P1
nD0 �n.t/cn´

n continues analytically to a neighborhood of p a measur-
able subset of the interval Œ0; 1�? In probabilists’ language, the question is whether continuability
across p is an event. The answer is affirmative for the following reason.

A holomorphic function f on the unit disc extends analytically across the boundary point p
if and only if there is some rational radius r greater than 1=2 such that the Taylor series of f
centered at the point p=2 has radius of convergence greater than r . An equivalent statement is
that

lim sup
k!1

.jf .k/.p=2/j=kŠ/1=k < 1=r;

or that there exists a positive rational number s less than 2 and a natural number N such that

jf .k/.p=2/j < kŠ sk whenever k > N .

If ft.´/ denotes the series
P1
nD0 �n.t/cn´

n, then

jf
.k/
t .p=2/j D

ˇ̌̌̌ 1X
nDk

�n.t/cn
nŠ

.n � k/Š
.p=2/n�k

ˇ̌̌̌
:

This (absolutely) convergent series is a measurable function of t since each �n.t/ is a measurable
function, so the set of t in the interval Œ0; 1� for which jf .k/t .p=2/j < kŠ sk is a measurable set,
sayEk. The set of points t for which the power series

P1
nD0 �n.t/cn´

n extends across the point p
is then [

0<s<2
s2Q

[
N�1

\
k>N

Ek;

which again is a measurable set, being obtained from measurable sets by countably many opera-
tions of taking intersections and unions.

Notice too that extendability of
P1
nD0 �n.t/cn´

n across the boundary point p is a “tail event”:
the property is insensitive to changing any finite number of terms of the series. A standard
result from probability known as Kolmogorov’s zero–one law implies that this event either has
probability 0 or has probability 1.

Moreover, each Rademacher function has the same distribution as its negative (both �n and��n
take the value 1 with probability 1=2 and the value �1 with probability 1=2), so a property that
is almost sure for the series

P1
nD0 �n.t/cn´

n is almost sure for the series
P1
nD0.�1/

n�n.t/cn´
n

or for any similar series obtained by changing the signs according to a fixed pattern that is inde-
pendent of t . The intuition is that if S is a measurable subset of Œ0; 1�, and each element t of S

13
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is represented as a binary expansion
P1
nD1 an.t/=2

n, then the set S 0 obtained by systematically
flipping the bit a5.t/ from 0 to 1 or from 1 to 0 has the same measure as the original set S ; and
similarly if multiple bits are flipped simultaneously.

Now suppose, seeking a contradiction, that there is a neighborhood U of p to which the
power series

P1
nD0 �n.t/cn´

n continues analytically with probability 1. This neighborhood
contains, for some natural number k, an arc of the unit circle of length greater than 2�=k.
For each nonnegative integer n, set bn equal to �1 if n is a multiple of k and C1 other-
wise. By the preceding observation, the power series

P1
nD0 bn�n.t/cn´

n extends to U with
probability 1. The difference of two continuable series is continuable, so the power seriesP1
jD0 �jk.t/cjk´

jk containing only powers of ´ divisible by k also continues to the neighbor-
hood U with probability 1. This new series is invariant under rotation by every integral multiple
of angle 2�=k, so this series almost surely continues analytically to a neighborhood of the whole
unit circle. In other words, the power series

P1
jD0 �jk.t/cjk´

jk almost surely has radius of
convergence greater than 1. Fix a natural number ` between 1 and k � 1 and repeat the ar-
gument, changing bn to be equal to �1 if n is congruent to ` modulo k and 1 otherwise. It
follows that the power series

P1
jD0 �jkC`.t/cjkC`´

jkC`, which equals ´` times the rotationally
invariant series

P1
jD0 �jkC`.t/cjkC`´

jk, almost surely has radius of convergence greater than 1.
Adding these series for the different residue classes modulo k recovers the original random seriesP1
nD0 �n.t/cn´

n, which therefore has radius of convergence greater than 1 almost surely. But as
observed just before the proof, the radius of convergence of

P1
nD0 �n.t/cn´

n is almost surely
equal to 1. The contradiction shows that the power series

P1
nD0 �n.t/cn´

n does, after all, have
the unit circle as natural boundary almost surely.

Now consider the multidimensional situation: suppose that D is the domain of convergence
in Cn of the power series

P
˛ c˛´

˛. Let �˛ denote one of the Rademacher functions, a dif-
ferent one for each multi-index ˛. The goal is to show that almost surely, the power seriesP
˛ �˛.t/c˛´

˛ continues analytically across no boundary point of D. It suffices to show for one
fixed boundary point p with nonzero coordinates that the series almost surely is singular at p;
one gets the full conclusion as before by considering a countable dense sequence in the boundary.

Having fixed such a boundary point p, observe that if ı is an arbitrary positive number, then
the power series

P
˛ c˛´

˛ fails to converge absolutely at the dilated point .1 C ı/p; for in the
contrary case, the series would converge absolutely in the whole polydisc centered at 0 deter-
mined by the point .1C ı/p, so p would be in the interior of the convergence domain D instead
of on the boundary. (The assumption that all coordinates of p are nonzero is used here.) Con-
sequently, there are infinitely many values of the multi-index ˛ for which jc˛Œ.1C 2ı/p�˛j > 1;
for otherwise, the series

P
˛ c˛Œ.1 C ı/p�

˛ would converge absolutely by comparison with the
convergent geometric series

P
˛Œ.1C ı/=.1C 2ı/�

j˛j. In other words, there are infinitely many
values of ˛ for which jc˛p˛j > 1=.1C 2ı/j˛j.

Now consider the single-variable random power series obtained by restricting the multi-variable
random power series to the complex line through p. This series, as a function of � in the unit disc
in C, is

P1
kD0

�P
j˛jDk �˛.t/c˛p

˛
�
�k . The goal is to show that this single-variable power series

almost surely has radius of convergence equal to 1 and almost surely is singular at the point on

14
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the unit circle where � D 1. It then follows that the multi-variable random series
P
˛ �˛.t/c˛´

˛

almost surely is singular at p.
The deduction that the one-variable series almost surely is singular at 1 follows from the same

argument used in the proof of the Paley–Zygmund theorem. Although the series coefficientP
j˛jDk �˛.t/c˛p

˛ is no longer a Rademacher funtion, it is still a symmetric random variable
(symmetric means that the variable is equally distributed with its negative), and the coefficients
for different values of k are independent, so the same proof applies.

What remains to show, then, is that the single-variable power series almost surely has radius of
convergence equal to 1. The new goal is to obtain information about the size of the coefficientsP
j˛jDk �˛.t/c˛p

˛ from the knowledge that jc˛p˛j > 1=.1 C 2ı/j˛j for infinitely many values
of ˛.

The orthonormality of the Rademacher functions implies thatZ 1

0

ˇ̌̌̌ X
j˛jDk

�˛.t/c˛p
˛

ˇ̌̌̌2
dt D

X
j˛jDk

jc˛p
˛
j
2:

The sum on the right-hand side is at least as large as any single term, so there are infinitely many
values of k for which Z 1

0

ˇ̌̌̌ X
j˛jDk

�˛.t/c˛p
˛

ˇ̌̌̌2
dt >

1

.1C 2ı/2k
:

The issue now is to deduce some control on the function
ˇ̌P
j˛jDk �˛.t/c˛p

˛
ˇ̌2 from the lower

bound on its integral.
Lemma 2. If g W Œ0; 1� ! R is a non-negative, square-integrable function, then the Lebesgue
measure of the set of points at which the value of g is greater than or equal to 1

2

R 1
0
g.t/ dt is at

least �R 1
0
g.t/ dt

�2
4
R 1
0
g.t/2 dt

: (2.2)

Proof. Let S denote the indicated subset of Œ0; 1� and � its measure. On the set Œ0; 1� n S , the
function g is bounded above by the constant 1

2

R 1
0
g.t/ dt , soZ 1

0

g.t/ dt D

Z
S

g.t/ dt C

Z
Œ0;1�nS

g.t/ dt

�

Z
S

g.t/ dt C .1 � �/1
2

Z 1

0

g.t/ dt

�

Z
S

g.t/ dt C 1
2

Z 1

0

g.t/ dt:

Therefore
1
4

�Z 1

0

g.t/ dt

�2
�

�Z
S

g.t/ dt

�2
:
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By the Cauchy–Schwarz inequality,�Z
S

g.t/ dt

�2
� �

Z
S

g.t/2 dt � �

Z 1

0

g.t/2 dt:

Combining the preceding two inequalities yields the desired conclusion (2.2).

Now apply the lemma with g.t/ equal to
ˇ̌P
j˛jDk �˛.t/c˛p

˛
ˇ̌2. The integral in the denomina-

tor of (2.2) equals Z 1

0

ˇ̌̌̌ X
j˛jDk

�˛.t/c˛p
˛

ˇ̌̌̌4
dt: (2.3)

Exercise 9. The integral of the product of four Rademacher functions equals 0 unless either all
four functions are the same or the four functions are equal in pairs.

There are three ways to group four items into two pairs, so the integral (2.3) equalsX
j˛jDk

jc˛p
˛
j
4
C 3

X
j˛jDk
jˇ jDk
˛¤ˇ

jc˛p
˛
j
2
jcˇp

ˇ
j
2:

This expression is at most 3
�P
j˛jDk jc˛p

˛j2
�2, or 3

�R 1
0
g.t/ dt

�2. Accordingly, the quotient
in (2.2) is bounded below by 1=12 for the indicated choice of g. (The specific value 1=12 is not
significant; what matters is that it is a positive constant.)

The upshot is that there are infinitely many values of k for which there exists a subset of the
interval Œ0; 1� of measure at least 1=12 such thatˇ̌̌̌ X

j˛jDk

�˛.t/c˛p
˛

ˇ̌̌̌1=k
>

1

21=f2kg.1C 2ı/

for every t in this subset. The right-hand side exceeds 1=.1 C 3ı/ when k is sufficiently large.
For different values of k, the expressions on the left-hand side are independent functions; the
probability that two independent events occur simultaneously is the product of their probabilities.
Accordingly, if m is a natural number, and m of the indicated values of k are selected, the
probability is at most .11=12/m that there is none for whichˇ̌̌̌ X

j˛jDk

�˛.t/c˛p
˛

ˇ̌̌̌1=k
>

1

.1C 3ı/
: (2.4)

Since .11=12/m tends to 0 as m tends to infinity, the probability is 1 that inequality (2.4) holds
for some value of k. For an arbitrary natural number N , the same conclusion holds (for the
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same reason) for some value of k larger than N . The intersection of countably many sets of
probability 1 is again a set of probability 1, so

lim sup
k!1

ˇ̌̌̌ X
j˛jDk

�˛.t/c˛p
˛

ˇ̌̌̌1=k
�

1

.1C 3ı/

with probability 1. (The argument in this paragraph is nothing but the proof of the standard
Borel–Cantelli lemma from probability theory.)

Thus the one-variable power series
P1
kD0

�P
j˛jDk �˛.t/c˛p

˛
�
�k almost surely has radius of

convergence bounded above by 1 C 3ı. But ı is an arbitrary positive number, so the radius of
convergence is almost surely bounded above by 1. The radius of convergence is surely no smaller
than 1, for the series converges absolutely when j�j < 1. Therefore the radius of convergence is
almost surely equal to 1. This conclusion completes the proof.

Open Problem. Prove the Cartan–Thullen theorem by using a multi-variable gap series (avoid-
ing both probabilistic methods and the Baire category theorem).

2.5 Summary: domains of convergence

The preceding discussion shows that for complete Reinhardt domains, the following properties
are all equivalent.

� The domain is logarithmically convex.

� The domain is the domain of convergence of some power series.

� The domain is a domain of holomorphy.

In other words, the problem of characterizing domains of holomorphy is solved for the special
case of complete Reinhardt domains.

2.6 The Hartogs phenomenon

In the preceding sections, the infinite series have been Maclaurin series. Consideration of Laurent
series leads to an interesting new instance of automatic analytic continuation.

Theorem 4. Suppose ı is a positive number less than 1, and f is holomorphic on f .w; ´/ W
jwj < ı and j´j < 1 g [ f .w; ´/ W 1 � ı < j´j < 1 and jwj < 1 g. Then f extends to be
holomorphic on the unit bidisc in C2.

Notice that the initial domain of definition of f is a multi-circular (Reinhardt) domain, but not
a complete Reinhardt domain. There is no loss of generality in considering a symmetric “Hartogs
figure,” for an asymmetric figure can be shrunk to obtain a symmetric one. It will be evident from
the proof that the theorem generalizes routinely to dimensions greater than 2.
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Proof. On each slice where w is fixed, the function f .w; ´/ is holomorphic at least in an an-
nulus of inner radius 1 � ı and outer radius 1, so f .w; ´/ can be expanded in a Laurent seriesP1
kD�1 ck.w/´

k. Moreover, if  is an arbitrary positive number less than ı, then

ck.w/ D
1

2�i

Z
j´jD1�

f .w; ´/

´kC1
d´:

Since f .w; ´/ is holomorphic when 1 � ı < j´j < 1 and jwj < 1, this integral representation
shows that each ck.w/ is a holomorphic function of w in the unit disc.

When jwj < ı, the Laurent series for f .w; ´/ is actually a Maclaurin series: when k < 0,
the coefficient ck.w/ is identically equal to zero when jwj < ı. By the one-dimensional identity
theorem, the holomorphic function ck.w/ is identically equal to zero in the whole unit disc when
k < 0. Therefore the series expansion for f .w; ´/ reduces to

P1
kD0 ck.w/´

k, a Maclaurin series
for every value of w in the unit disk. This series defines the required holomorphic extension
of f , assuming that the series converges uniformly on compact subsets of f .w; ´/ W jwj < 1 and
j´j < 1 �  g.

To verify the normal convergence, fix an arbitrary positive number ˇ less than 1, and observe
that the continuous function jf .w; ´/j has some finite upper bound M on the compact set where
jwj � ˇ and j´j D 1 �  . Estimating the integral representation for the series coefficient
shows that jck.w/j � M=.1 � /k when jwj � ˇ. Consequently, if ˛ is an arbitrary positive
number less than 1 �  , then the series

P1
kD0 ck.w/´

k converges absolutely when jwj � ˇ and
j´j � ˛ by comparison with the convergent geometric series

P1
kD0MŒ˛=.1 � /�k . Since the

required locally uniform convergence holds, the series
P1
kD0 ck.w/´

k does define the desired
holomorphic extension of f to the bidisc.

The same method of proof yields a result about “internal” analytic continuation rather than
“external” analytic continuation.

Theorem 5. If r is a positive radius less than 1, and f is holomorphic in the spherical shell
f .w; ´/ 2 C2 W r2 < jwj2 C j´j2 < 1 g, then f extends to be a holomorphic function on the
whole unit ball.

The theorem is stated in dimension 2 for convenience of exposition, but a corresponding result
holds both in higher dimension and in other geometric settings. A general theorem (to be proved
later) states that if K is a compact subset of an open set ˝ in Cn (where n � 2), and ˝ n K
is connected, then every holomorphic function on ˝ n K extends to be a holomorphic function
on ˝. Theorems of this type are known collectively as “the Hartogs phenomenon.”

In particular, Theorem 5 demonstrates that a holomorphic function of two complex variables
cannot have an isolated singularity, for the function continues analytically across a compact
hole in its domain. The same reasoning applied to the reciprocal of the function shows that a
holomorphic function of two (or more) complex variables cannot have an isolated zero.

Proof of Theorem 5. As in the preceding proof, expand f .w; ´/ for a fixed w as a Laurent seriesP1
kD�1 ck.w/´

k. To see that each coefficient ck.w/ is a holomorphic function of w in the unit

18



2 Power series

disc is not quite as simple as before, because there is no evident global integral representation
for ck.w/. But holomorphicity is a local property, and it is evident that for each fixed w0 in
the unit disc, there is a neigborhood U of w0 and a radius s such that the Cartesian product
U � f ´ 2 C W j´j D s g is contained in a compact subset of the spherical shell. Consequently,
each ck.w/ admits a local integral representation and therefore defines a holomorphic function
on the unit disc.

When jwj is close to 1, the Laurent series for f .w; ´/ is a Maclaurin series, so when k < 0, the
function ck.w/ is identically equal to 0 on an open subset of the unit disc and hence on the whole
disc. Therefore the series representation for f .w; ´/ is a Maclaurin series for every w. That the
series converges locally uniformly follows as before from the local integral representation for
ck.w/. Therefore the series defines the required holomorphic extension of f .w; ´/ to the whole
unit ball.

2.7 Separate holomorphicity implies joint holomorphicity

The working definition of a holomorphic function of two (or more) variables is a continuous
function that is holomorphic in each variable separately. Hartogs proved that the hypothesis of
continuity is superfluous.

Theorem 6. If f .w; ´/ is holomorphic in w for each fixed ´ and holomorphic in ´ for each
fixed w, then f .w; ´/ is holomorphic jointly in the two variables; that is, f .w; ´/ can be repre-
sented locally as a convergent power series in two variables.

The analogous theorem holds also for functions of n complex variables with minor adjustments
to the proof. But there is no corresponding theorem for functions of real variables. Indeed, the
function on R2 that equals 0 at the origin and xy=.x2Cy2/ when .x; y/ ¤ .0; 0/ is real-analytic
in each variable separately but is not even jointly continuous. A large literature exists about
deducing properties that hold in all variables jointly from properties that hold in each variable
separately.10

The proof of Hartogs depends on some prior work of William Fogg Osgood. Here is the initial
step.11

Theorem 7 (Osgood, 1899). If f .w; ´/ is bounded in both variables jointly and holomorphic in
each variable separately, then f .w; ´/ is holomorphic in both variables jointly.

Proof. The conclusion is local and is invariant under translations and dilations of the coordinates,
so there is no loss of generality in supposing that the domain of definition of f is the unit bidisc.
Let M be an upper bound for the modulus of f in the bidisc.

10See a survey article by Marek Jarnicki and Peter Pflug, Directional regularity vs. joint regularity, Notices of the
American Mathematical Society 58 (2011), no. 7, 896–904.

11W. F. Osgood, Note über analytische Functionen mehrerer Veränderlichen, Mathematische Annalen 52 (1899)
462–464.

19



2 Power series

For each fixed w, the function f .w; ´/ can be expanded in a power series
P1
kD0 ck.w/´

k

that converges for ´ in the unit disc. Moreover, jck.w/j � M for each k by Cauchy’s estimate.
Accordingly, the series

P1
kD0 ck.w/´

k actually converges uniformly in both variables jointly in
an arbitrary compact subset of the bidisc. If each coefficient function ck.w/ can be shown to be a
holomorphic function of w, then it will follow that f .w; ´/ is the locally uniform limit of jointly
holomorphic functions, hence is jointly holomorphic.

Now c0.w/ D f .w; 0/, so c0.w/ is a holomorphic function of w in the unit disc by the hy-
pothesis of separate holomorphicity. Proceed by induction. Suppose, for some natural number k,
that cj .w/ is a holomorphic function of w when j < k. Observe that

ck.w/C

1X
mD1

ckCm.w/´
m
D
f .w; ´/ �

Pk�1
jD0 cj .w/´

j

´k
when ´ ¤ 0.

When ´ tends to 0, the left-hand side converges (uniformly with respect to w) to ck.w/, hence
so does the right-hand side. For every fixed nonzero value of ´, the right-hand side is a holomor-
phic function of w by the induction hypothesis and the hypothesis of separate holomorphicity.
Accordingly, the function ck.w/ is the uniform limit of holomorphic functions, hence is holomor-
phic. That conclusion completes the induction argument and also the proof of the theorem.

Subsequently, Osgood made further progress but did achieve the ultimate result.12

Theorem 8 (Osgood, 1900). If f .w; ´/ is holomorphic in each variable separately, then there
is a dense open subset of the domain of f on which f is holomorphic in both variables jointly.

Proof. It suffices to show that if D1 �D2 is an arbitrary closed bidisc contained in the domain
of definition of f , then there is an open subset of D1 � D2 on which f is holomorphic. Let
Ek denote the set of w inD1 such that jf .w; ´/j � k when ´ 2 D2. The continuity of jf .w; ´/j
in w for ´ fixed implies that Ek is a closed subset of D1: namely, for each fixed ´, the set
fw 2 D1 W jf .w; ´/j � k g is closed, and Ek is the intersection of these closed sets as ´ runs
over D2. Moreover, every point of D1 is contained in some Ek. By the Baire category theorem,
there is some value of k for which the set Ek has interior points. Consequently, there is an
open subset of D1 � D2 on which f is bounded, hence holomorphic by Osgood’s previous
theorem.

Proof of Theorem 6 on separate holomorphicity. In view of Theorem 8 and the local nature of
the conclusion, it suffices to prove that if f .w; ´/ is separately holomorphic on a neighborhood of
the closed unit bidisc, and there exists a positive ı less than 1 such that f is jointly holomorphic
in a neighborhood of the smaller bidisc where j´j � ı and jwj � 1, then f is jointly holomorphic
on the open unit bidisc.

12W. F. Osgood, Zweite Note über analytische Functionen mehrerer Veränderlichen, Mathematische Annalen 53
(1900) 461–464.
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2 Power series

In this situation, write f .w; ´/ as a series
P1
kD0 ck.w/´

k. Each coefficient function ck.w/
can be written as an integral

1

2�i

Z
j´jDı

f .w; ´/

´kC1
d´

and so is a holomorphic function ofw in the unit disc. IfM is an upper bound for jf .w; ´/jwhen
j´j � ı and jwj � 1, then jck.w/j �M=ık for every k. Accordingly, there is a (large) constantB
such that jck.w/j1=k < B for every k. Moreover, for each fixed w, the series

P1
kD0 ck.w/´

k

converges for ´ in the unit disc, so lim supk!1 jck.w/j
1=k � 1.

The goal now is to show that if " is an arbitrary positive number, and r is an arbitrary radius
slightly less than 1, then there exists a natural number N such that jck.w/j1=k < 1 C " when
k � N and jwj � r . This property implies that the series

P1
kD0 ck.w/´

k converges uniformly
on compact subsets of the open unit bidisc, whence f .w; ´/ is jointly holomorphic on the bidisc.
Letting uk.w/ denote the subharmonic function jck.w/j1=k reduces the problem to the following
technical lemma, after which the proof will be complete.

Lemma 3. Suppose fukg1kD1 is a sequence of subharmonic functions on the unit disc that are
uniformly bounded above by a (large) constant B , and suppose lim supk!1 uk.w/ � 1 for
every w in the unit disc. Then for every positive " and every radius r less than 1, there exists a
natural number N such that uk.w/ � 1C " when jwj � r and k � N .

Proof. A compactness argument reduces the problem to showing that for each point w0 in the
disk of radius r , there is a neighborhoodU ofw0 and a natural numberN such that uk.w/ � 1C"
when w 2 U and k � N . The definition of lim sup provides a natural number N such that
uk.w0/ < 1 C 1

2
" when k � N . The issue is to get an analogous inequality that is locally

uniform in w.
Since uk is upper semicontinuous, there is a neighborhood ofw0 in which uk remains less than

1C ", but the size of this neighborhood might depend on k. The key idea for getting an estimate
independent of k is to apply the subaveraging property of subharmonic functions, for the uniform
upper bound on the functions means that integrals over discs are stable under perturbations of
the center point. Here are the details.

Fix a positive number ı less than .1 � r/=2. Fatou’s lemma implies thatZ
jw�w0j<ı

lim inf
k!1

.B � uk.w// dAreaw � lim inf
k!1

Z
jw�w0j<ı

.B � uk.w// dAreaw ;

so canceling B�ı2, changing the signs, and invoking the hypothesis shows that

�ı2 �

Z
jw�w0j<ı

lim sup
k!1

uk.w/ dAreaw � lim sup
k!1

Z
jw�w0j<ı

uk.w/ dAreaw :

Accordingly, there is a natural number N such thatZ
jw�w0j<ı

uk.w/ dAreaw <
�
1C 1

2
"
�
�ı2 when k � N .
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2 Power series

If  is a positive number less than ı, and w1 is a point such that jw1 � w0j <  , then the disc
of radius ıC centered at w1 contains the disc of radius ı centered at w0, with an excess of area
equal to �.2 C 2ı/. The subaveraging property of subharmonic functions implies that

�.ı C /2uk.w1/ �

Z
jw�w1j<ıC

uk.w/ dAreaw <
�
1C 1

2
"
�
�ı2 C B�

�
2 C 2ı

�
when k � N , or

uk.w1/ <

�
1C 1

2
"
�
�ı2 C B�.2 C 2ı/

�.ı C /2
:

The right-hand side has limit as  ! 0 equal to 1C 1
2
", so there is a small positive value of  for

which uk.w1/ < 1C " when k � N and w1 is an arbitrary point in the disk of radius  centered
at w0. This locally uniform estimate completes the proof of the lemma.

Exercise 10. Prove that a separately polynomial function on C2 is a jointly polynomial function.13

Exercise 11. What adjustments are needed in the proof to obtain the analogue of Theorem 6 in
dimension n?

Exercise 12. Define f W C2 ! C [ f1g as follows:

f .w; ´/ D

8̂<̂
:
.w C ´/2=.w � ´/; when w ¤ ´;
1; when w D ´ but .w; ´/ ¤ .0; 0/;
0; when .w; ´/ D .0; 0/.

Show that f is separately meromorphic, and f .0; 0/ is finite, yet f is not continuous at .0; 0/
(not even with respect to the spherical metric on the extended complex numbers).14

13The corresponding statement for functions on R2 was proved by F. W. Carroll, A polynomial in each variable
separately is a polynomial, American Mathematical Monthly 68 (1961) 42.

14This example is due to Theodore J. Barth, Families of holomorphic maps into Riemann surfaces, Transactions
of the American Mathematical Society 207 (1975) 175–187. Barth’s interpretation of the example is that f is a
holomorphic mapping from C2 into the Riemann sphere (a one-dimensional, compact, complex manifold) that
is separately holomorphic but not jointly holomorphic.
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3 Convexity

From one point of view, convexity is an unnatural property in complex analysis. The Riemann
mapping theorem shows that already in dimension 1, convexity is not preserved by biholomor-
phic mappings: indeed, every nonconvex but simply connected domain in the plane is confor-
mally equivalent to the unit disc.

On the other hand, section 2.2 reveals that a special kind of convexity—namely, logarithmic
convexity—appears naturally in studying convergence domains of power series. Various ana-
logues of convexity turn out to be central to some fundamental problems in multi-dimensional
complex analysis.

3.1 Real convexity

Ordinary geometric convexity can be described either through an internal geometric property—
the line segment joining two points of the set stays within the set—or through an external
property—every point outside the set can be separated from the set by a hyperplane. The lat-
ter geometric property can be rephrased in analytic terms by saying that every point outside the
set can be separated from the set by a linear function; that is, there is a linear function that is
larger at the specified exterior point than anywhere on the set.

For an arbitrary set, not necessarily convex, its convex hull is the smallest convex set containing
it, that is, the intersection of all convex sets containing it. The convex hull of an open set is
open, and in Rn (or in any finite-dimensional vector space), the convex hull of a compact set is
compact.1

Observe that an open set G in Rn is convex if and only if the convex hull of every compact
subsetK is again a compact subset ofG. Indeed, ifK is a subset ofG, then the convex hull ofK
is a subset of the convex hull of G, so if G is already convex, then the convex hull of K is both
compact and a subset of G. Conversely, if G is not convex, then there are two points of G such
that the line segment joining them goes outside of G; take K to be the union of the two points.

1In an infinite-dimensional Hilbert space, the convex hull of a compact set is not necessarily closed, let alone
compact. But the closure of the convex hull of a compact set is compact in every Hilbert space and in every
Banach space. See, for example, Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis:
A Hitchhiker’s Guide, third edition, Springer, 2006, section 5.6.

A standard reference for the finite-dimensional theory of real convexity is R. Tyrrell Rockafellar, Convex
Analysis, Princeton University Press, 1970 (reprinted 1997).
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3 Convexity

3.2 Convexity with respect to a class of functions

The analytic description of convexity has a natural generalization. Suppose that F is a class of
upper semi-continuous real-valued functions on an open set G in Cn (which might be Cn itself).
[Recall that a real-valued function f is upper semi-continuous if f �1.�1; a/ is an open set
for every real number a. Upper semi-continuity guarantees that f attains a maximum on each
compact set.] A compact subset K of G is called convex with respect to the class F if for every
point p of G n K there exists an element f of F for which f .p/ > max´2K f .´/; in other
words, every point outside K can be separated from K by a function in F . If F is a class of
functions that are complex-valued but not real-valued (holomorphic functions, say), then it is
natural to consider convexity with respect to the class of absolute values of the functions in F ;
one typically says simply “F-convex” for short when the meaning is really “G-convex, where
G D f jf j W f 2 F g.”

The F-convex hull of a compact set K, denoted by bKF (or simply bK if the class F is un-
derstood), is the smallest F-convex set containing K (assuming, of course, that there are some
F-convex sets containing K). One says that an open subset ˝ of G is F-convex if for every
compact subset K of ˝, the F-convex hull bKF is again a compact subset of ˝.
Example 1. Let G be Rn, and let F be the set of all continuous functions on Rn. Then every
compact setK is F-convex because, by Urysohn’s lemma, every point not inK can be separated
from K by a continuous function.
Example 2. Let G be Cn, and let F be the set of coordinate functions, f´1; : : : ; ´ng. The F-
convex hull of a single point w is the set of all points ´ for which j j́ j � jwj j for all j , that is,
the polydisc determined by the point w. (If some coordinate of w is equal to 0, then the polydisc
is degenerate.) More generally, the F-convex hull of a compact set K is the set of points ´
for which j j́ j � maxf j�j j W � 2 K g for every j . Consequently, the F-convex open sets are
precisely the open polydiscs centered at the origin.
Exercise 13. Show that a domain is convex with respect to the class F consisting of the mono-
mials ´˛ if and only if the domain is a logarithmically convex, complete Reinhardt domain.

A useful observation is that increasing the class of functions F makes it easier to separate
points, so the collection of F-convex sets becomes larger. In other words, if F1 � F2, then
every F1-convex set is also F2-convex.
Exercise 14. As indicated above, ordinary geometric convexity in Rn is the same as convexity
with respect to the class of linear functions a1x1 C � � � C anxn; moreover, it is equivalent to
consider convexity with respect to the class of affine linear functions a0 C a1x1 C � � � C anxn.
The aim of this exercise is to determine what happens if the functions are replaced with their
absolute values.

1. Suppose F is the set f ja1x1 C � � � C anxnj g of absolute values of linear functions on Rn.
Describe the F-convex hull of a general compact set.

2. Suppose F is the set f ja0Ca1x1C� � �Canxnj g of absolute values of affine linear functions.
Describe the F-convex hull of a general compact set.
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3 Convexity

Exercise 15. Repeat the preceding exercise in the setting of Cn and functions with complex
coefficients:

1. Suppose F is the set f ja1´1C� � �Can´nj g of absolute values of complex linear functions.
Describe the F-convex hull of a compact set.

2. Suppose F is the set f ja0 C a1´1 C � � � C an´nj g of absolute values of affine complex
linear functions. Describe the F-convex hull of a compact set.

Observe that a point and a compact set can be separated by jf j if and only they can be sepa-
rated by jf j2 or more generally by jf jk. Hence there is no loss of generality in assuming that
a class F of holomorphic functions is closed under forming positive integral powers. The next
example demonstrates that the situation changes if arbitrary products are allowed.

3.2.1 Polynomial convexity

Again let G be all of Cn, and let F be the set of polynomials (in the complex variables). Then
F-convexity is called polynomial convexity. (When the setting is Cn, the word “polynomial”
is usually understood to mean “holomorphic polynomial,” that is, a polynomial in the complex
coordinates ´1, . . . , ´n rather than a polynomial in the underlying real coordinates of R2n.)

A first observation is that the polynomial hull of a compact set is a subset of the ordinary
convex hull. Indeed, if a point is separated from a compact set by a real-linear function Re `.´/,
then it is separated by eRe `.´/ and hence by je`.´/j; the entire function e`.´/ can be approximated
uniformly on compact sets by polynomials. (Alternatively, apply the solution of Exercise 15.)

When n D 1, polynomial convexity is a topological property. By Runge’s approximation
theorem, if K is a compact subset of C (not necessarily connected), and if K has no holes (that
is, C nK is connected), then every function that is holomorphic in a neighborhood of K can be
approximated uniformly on K by (holomorphic) polynomials.2 Now if K has no holes, and p is
a point outside K, then Runge’s theorem implies that the function equal to 0 in neighborhood
of K and equal to 1 in a neighborhood of p can be arbitrarily well approximated on K [ fpg by
polynomials; hence p is not in the polynomial hull of K. On the other hand, if K has a hole,
then the maximum principle implies that points inside the hole are in the polynomial hull of K.
In other words, a compact set K in C is polynomially convex if and only if K has no holes. A
connected open subset of C is polynomially convex if and only if it is simply connected, that is,
its complement with respect to the extended complex numbers is connected.

The story is much more complicated when n > 1, for polynomial convexity is no longer de-
termined by a topological condition. For instance, whether or not a circle (of real dimension 1) is
polynomially convex depends on how that curve is situated with respect to the complex structure
of Cn.

2There is a deeper theorem due to S. N. Mergelyan: namely, the conclusion follows from the weaker hypothesis
that the function to be approximated is continuous on K and holomorphic at the interior points of K.
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3 Convexity

Example 3. (a) In C2, the circle f .cos �Ci sin �; 0/ W 0 � � � 2� g is not polynomially convex.
The one-dimensional maximum principle implies that the polynomial hull of this curve is the
disc f .´1; 0/ W j´1j � 1 g.

(b) In C2, the circle f .cos �; sin �/ W 0 � � � 2� g is polynomially convex. Indeed, since the
polynomial hull is a subset of the ordinary convex hull, all that needs to be shown is that
points inside the disc bounded by the circle can be separated from the circle by (holomor-
phic) polynomials. The polynomial 1 � ´21 � ´

2
2 is identically equal to 0 on the circle and

takes positive real values at points inside the circle, so this polynomial exhibits the required
separation.

The preceding idea can easily be generalized to produce a wider class of examples of polyno-
mially convex sets.
Example 4. If K is a compact subset of the real subspace of Cn (that is, K � Rn � Cn), then
K is polynomially convex.

This proposition can be proved by invoking the Weierstrass approximation theorem in Rn, but
it is interesting that there is an elementary, “bare-hands” argument. First notice that convexity
with respect to (holomorphic) polynomials is the same property as convexity with respect to
entire functions, since an entire function can be approximated uniformly on a compact set by
polynomials (for instance, by the partial sums of the Maclaurin series). Therefore it suffices to
write down an entire function whose modulus separatesK from a specified point q outside ofK.

A function that does the trick is the Gaussian function exp
Pn
jD1�. j́ � Re qj /2. To see why,

letM.´/ denote the modulus of this function: namely, exp
Pn
jD1

�
.Im j́ /

2 � .Re j́ � Re qj /2
�
.

If q … Rn, then M.q/ D exp
Pn
jD1.Im qj /

2 > 1, while

max
´2K

M.´/ D max
´2K

exp
nX

jD1

�. j́ � Re qj /2 � 1:

On the other hand, if q 2 Rn but q … K, then the expression
Pn
jD1. j́ � Re qj /2 has a positive

lower bound on the compact set K, so max´2KM.´/ < 1, while M.q/ D 1. The required
separation holds in both cases. (Actually, it suffices to check the second case, for the polynomial
hull of K is a subset of the convex hull of K and hence a subset of Rn.)
Exercise 16. Show that every compact subset of a totally real subspace of Cn is polynomially
convex. (A real subspace of Cn is called totally real if it contains no complex line. In other
words, a subspace is totally real if, whenever ´ is a nonzero point in the subspace, the point i´ is
not in the subspace.)

Having some polynomially convex sets in hand, one can generate additional polynomially
convex sets by applying the following example.
Example 5. If K is a polynomially convex compact subset of Cn, and p is a polynomial, then
the graph f .´; p.´// 2 CnC1 W ´ 2 K g is a polynomially convex compact subset of CnC1.

For suppose ˛ 2 Cn and ˇ 2 C, and .˛; ˇ/ is not in the graph of p over K; to separate
the point .˛; ˇ/ from the graph by a polynomial, consider two cases. If ˛ … K, then there is

26
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a polynomial of n variables that separates ˛ from K in Cn; the same polynomial, viewed as a
polynomial on CnC1 that is independent of ´nC1, separates the point .˛; ˇ/ from the graph of p.
Suppose, on the other hand, that ˛ 2 K, but ˇ ¤ p.˛/. Then the polynomial ´nC1 � p.´/ is
identically equal to 0 on the graph and is not equal to 0 at .˛; ˇ/, so this polynomial separates
.˛; ˇ/ from the graph.

Exercise 17. If f is a function that is continuous on the closed unit disc in C and holomorphic
on the interior of the disc, then the graph of f in C2 is polynomially convex.

More generally, a smooth analytic disc—the image in Cn of the closed unit disc under a holo-
morphic embedding whose derivative is never equal to zero—is always polynomially convex.3

But biholomorphic images of polydiscs can fail to be polynomially convex.4

The basic examples of polynomially convex sets in Cn with nonvoid interior are the so-called
polynomial polyhedra: sets of the form f ´ 2 Cn W jp1.´/j � 1, . . . , jpk.´/j � 1 g or f ´ 2 Cn W
jp1.´/j < 1, . . . , jpk.´/j < 1 g, where each function pj is a polynomial. The model case is the
polydisc f ´ 2 Cn W j´1j � 1, . . . , j´nj � 1 g; another concrete example is the logarithmically
convex, complete Reinhardt domain f .´1; ´2/ 2 C2 W j´1j < 1, j´2j < 1, and j2´1´2j < 1 g.

A polynomial polyhedron evidently is polynomially convex, since a point in the complement
is separated from the polyhedron by at least one of the defining polynomials. Notice that k,
the number of polynomials, can be larger than the dimension n. (If the polyhedron is compact
and nonvoid, then the number k cannot be less than n, but proving this property requires some
tools not yet introduced.5) A standard way to force a polynomial polyhedron to be bounded is to
include in the set of defining polynomials the functions j́=R for some large R and for each j
from 1 to n.

A theorem from one-dimensional complex analysis known as Hilbert’s lemniscate theorem6

says that the boundary of a bounded, simply connected domain in C can be approximated within
an arbitrary positive " by a polynomial lemniscate: namely, by the set where some polynomial has
constant modulus. An equivalent statement is that ifK is a compact, polynomially convex subset
of C, and U is an open neighborhood of K, then there is a polynomial p such that jp.´/j < 1

when ´ 2 K and jp.´/j > 1 when ´ 2 C n U .
The following statement is a generalization of Hilbert’s lemniscate theorem to higher dimen-

sion: every polynomially convex set in Cn can be approximated by polynomial polyhedra.

3John Wermer, An example concerning polynomial convexity, Mathematische Annalen 139 (1959) 147–150.
4For an example in C3, see John Wermer, Addendum to “An example concerning polynomial convexity,” Mathe-

matische Annalen 140 (1960) 322–323. For an example in C2, see John Wermer, On a domain equivalent to the
bidisc, Mathematische Annalen 248 (1980), no. 3, 193–194.

5If w is a point of the polyhedron, then the k sets f ´ 2 Cn W pj .´/ � pj .w/ D 0 g are analytic varieties of
codimension 1 that intersect in an analytic variety of dimension at least n�k that is contained in the polyhedron.
If k < n, then this analytic variety has positive dimension, but there are no compact analytic varieties of positive
dimension.

6D. Hilbert, Ueber die Entwickelung einer beliebigen analytischen Function einer Variabeln in eine unendliche
nach ganzen rationalen Functionen fortschreitende Reihe, Nachrichten von der Königlichen Gesellschaft der
Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1897) 63–70; http://resolver.sub.

uni-goettingen.de/purl?GDZPPN002497727.
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3 Convexity

Theorem 9. (a) If K is a compact polynomially convex set, and U is an open neighborhood
of K, then there is an open polynomial polyhedron P such that K � P � U .

(b) If G is a polynomially convex open set, then G can be written as the union of an increasing
sequence of open polynomial polyhedra.

Proof. (a) Since the set K is bounded, it is contained in the interior of some closed polydisc D.
For each pointw inDnU , there is a polynomial p that separatesw fromK. This polynomial
can be multiplied by a suitable constant to guarantee that maxf jp.´/j W ´ 2 K g < 1 <

jp.w/j. Hence the set f ´ W jp.´/j < 1 g contains K and is disjoint from a neighborhood
of w. Since the set D n U is compact, there are finitely many polynomials p1, . . . , pk such
that the polyhedron

Tk
jD1f ´ W jpj .´/j < 1 g containsK and does not intersectDnU . Cutting

down this polyhedron by intersecting with D gives a new polyhedron that contains K and is
contained in U .

(b) Exhaust G by an increasing sequence of compact sets. The polynomial hulls of these sets
form another increasing sequence of compact subsets ofG (sinceG is polynomially convex).
After possibly omitting some of the sets and renumbering, one obtains an exhaustion of G
by a sequence fKj g1jD1 of polynomially convex compact sets such that each Kj is contained
in the interior of KjC1. The first part of the theorem then provides a sequence fPj g of open
polynomial polyhedra such that Kj � Pj � KjC1.

In Hilbert’s lemniscate theorem, a single polynomial suffices. An interesting question is
whether n polynomials suffice to define an approximating polyhedron in Cn. A partial result
in this direction has been known for half a century. A polyhedron can be a disconnected set;
Errett Bishop showed7 that the approximation can be accomplished by a set that is the union of a
finite number of the connected components of a polyhedron defined by n polynomials. Even in
the simple case of a ball, however, it is unknown whether a full polyhedron defined by n polyno-
mials will serve as the approximating set.

Open Problem. Can the closed unit ball in Cn be arbitrarily well approximated from outside by
polynomial polyhedra defined by n polynomials?

When n D 2, the answer to the preceding question is affirmative.8 But when n � 3, the
question remains open.9

7Errett Bishop, Mappings of partially analytic spaces, American Journal of Mathematics 83 (1961), no. 2, 209–
242; http://www.jstor.org/stable/2372953.

8Thomas Bloom, Norman Levenberg, and Yu. Lyubarskii, A Hilbert lemniscate theorem in C2, Annales de
l’Institut Fourier 58 (2008), no. 6, 2191-2220; doi:10.5802/aif.2411.

9Stéphanie Nivoche, Polynomial convexity, special polynomial polyhedra and the pluricomplex Green function
for a compact set in Cn, Journal de Mathématiques Pures et Appliquées 91 (2009), no. 4, 364–383; doi:

10.1016/j.matpur.2009.01.003.
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3 Convexity

Although the theory of polynomial convexity is sufficiently mature that there exists a good
reference book,10 determining the polynomial hull of even quite simple sets remains a fiendishly
difficult problem. In particular, the union of two disjoint, compact, polynomially convex sets
need not be polynomially convex.

Example 6 (Kallin,11 1965). Let K1 be f .ei� ; e�i�/ 2 C2 W 0 � � < 2� g, and let K2 be
f .2ei� ; 1

2
e�i�/ 2 C2 W 0 � � < 2� g. Both sets K1 and K2 are polynomially convex in view of

Exercise 16, sinceK1 lies in the totally real subspace of C2 in which ´1 D ´2, andK2 lies in the
totally real subspace in which ´1=4 D ´2. The unionK1[K2 is not polynomially convex, for the
polynomial hull contains the set f .´; 1=´/ W 1 < j´j < 2 g. Indeed, if p.´1; ´2/ is a polynomial
on C2 whose modulus is less than 1 on K1 [ K2, then p.´; 1=´/ is a holomorphic function on
C n f0g whose modulus is less than 1 on the boundary of the annulus f ´ 2 C W 1 < j´j < 2 g and
hence (by the maximum principle) on the interior of the annulus.

Here is one accessible positive result: If K1 and K2 are disjoint, compact, convex sets in Cn,
then the union K1 [K2 is polynomially convex.

Proof. The disjoint convex setsK1 andK2 can be separated by a real hyperplane, or equivalently
by the real part of a complex linear function `. The geometric picture is that ` projects Cn onto
a complex line (a one-dimensional complex subspace). The sets `.K1/ and `.K2/ are disjoint,
compact, convex sets in C.

Suppose now that w is a point outside of K1 [ K2. The goal is to separate w from K1 [ K2
by a polynomial.

If `.w/ … `.K1/ [ `.K2/, then Runge’s theorem provides a polynomial p of one complex
variable such that jp.`.w//j > 1, while jp.´/j < 1 when ´ 2 `.K1/ [ `.K2/. In other words,
the polynomial p ı ` separates w from K1 [K2 in Cn.

If, on the other hand, `.w/ 2 `.K1/[`.K2/, then one may as well assume that `.w/ 2 `.K1/.
But w … K1, and K1 is polynomially convex, so there is a polynomial p on Cn such that
jp.w/j > 1 and jp.´/j < 1=3 when ´ 2 K1. Let M be an upper bound for jpj on K2. Applying
Runge’s theorem in C gives a polynomial q of one variable such that jqj < 1=.3M/ on `.K2/
and 2=3 � jqj � 1 on `.K1/. The product polynomial p� .q ı`/ separates w fromK1[K2: for
on K1, the first factor has modulus less than 1=3, and the second factor has modulus no greater
than 1; on K2, the first factor has modulus at most M , and the second factor has modulus less
than 1=.3M/; and at w, the modulus of the first factor exceeds 1, and the modulus of the second
factor is at least 2=3.

The preceding proposition is a special case of a separation lemma of Eva Kallin, who showed
in the cited paper that the union of three closed, pairwise disjoint balls in Cn is always poly-
nomially convex. The question of the polynomial convexity of the union of four pairwise dis-
joint closed balls is still open after more than four decades. The problem is subtle, for Kallin

10Edgar Lee Stout, Polynomial Convexity, Birkhäuser Boston, 2007.
11Eva Kallin, Polynomial convexity: The three spheres problem, Proceedings of the Conference in Complex Anal-

ysis (Minneapolis, 1964), pp. 301–304, Springer, Berlin, 1965.
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3 Convexity

constructed an example of three closed, pairwise disjoint polydiscs in C3 whose union is not
polynomially convex.

Runge’s theorem in dimension 1 indicates that polynomial convexity is intimately connected
with the approximation of holomorphic functions by polynomials. There is an analogue of
Runge’s theorem in higher dimension, known as the Oka–Weil theorem. Here is the statement.

Theorem 10 (Oka–Weil). If K is a compact, polynomially convex set in Cn, then every function
holomorphic in a neighborhood of K can be approximated uniformly on K by (holomorphic)
polynomials.

Exercise 18. Give an example of a compact set K in C2 such that every function holomorphic
in a neighborhood of K can be approximated uniformly on K by polynomials, yet K is not
polynomially convex.

3.2.2 Linear and rational convexity

The preceding examples involve functions that are globally defined on the whole space. But in
many interesting cases, the class of functions depends on the region under consideration.

Suppose that G is an open set in Cn, and let F be the class of those linear fractional functions

a0 C a1´1 C � � � C an´n

b0 C b1´1 C � � � C bn´n

that happen to be holomorphic on G (in other words, the denominator has no zeroes inside G).
Strictly speaking, one should write FG , but usually the open set G will be clear from context.
By the solution of Exercise 15, every convex set is F-convex. A simple example of a nonconvex
but F-convex open set is C2 n f .´1; ´2/ 2 C2 W ´2 D 0 g: for if K is a compact subset of
this open set, then bKF stays away from the boundary of the open set, since the function 1=´2 is
bounded onK. The claim is that an open setG is F-convex if and only if through each boundary
point of G there passes a complex hyperplane that does not intersect G (a so-called supporting
hyperplane).

To prove the claim, suppose first that G is F-convex, and let w be a point in the boundary
of G. If K is a compact subset of G, then bKF is again a compact subset of G, so to every
point w0 in G sufficiently close to w there corresponds a linear fractional function f in F such
that f .w0/ D 1 > maxf jf .´/j W ´ 2 K g. Let ` denote the difference between the numerator
of f and the denominator of f ; then `.´/ D 0 at a point ´ in G if and only if f .´/ D 1. Hence
the zero set of `, which is a complex hyperplane, passes through w0 and does not intersect K.
Multiply ` by a suitable constant to ensure that the vector consisting of the coefficients of ` has
length 1.

Now exhaust G by an increasing sequence fKj g of compact sets. The preceding construction
produces a sequence fwj g of points in G converging to w and a sequence f j̀ g of normalized
first-degree polynomials such that j̀ .wj / D 0, and the zero set of j̀ does not intersect Kj . The
set of vectors of length 1 is compact, so it is possible to pass to the limit of a suitable subsequence
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3 Convexity

to obtain a complex hyperplane that passes through the boundary point w and does not intersect
the open set G.

Conversely, a supporting complex hyperplane at a boundary point w is the zero set of a certain
first-degree polynomial `, and 1=` is then a linear fractional function that is holomorphic on G
and blows up at w. Therefore the F-convex hull of a compact set K in G stays away from w.
Since w is arbitrary, the hull bKF is a compact subset of G. Since K is arbitrary, the domain G is
F-convex by definition.

A domain is called weakly linearly convex if it is convex with respect to the linear fractional
functions that are holomorphic on it. (A domain is called linearly convex if the complement can
be written as a union of complex hyperplanes. The terminology is not completely standardized,
however, so one has to check each author’s definitions. There are examples of weakly linearly
convex domains that are not linearly convex. The idea can be seen already in R2. Take an
equilateral triangle of side length 1 and erase the middle portion, leaving in the corners three
equilateral triangles of side length slightly less than 1=2. There is a supporting line through each
boundary point of this disconnected set, but there is no line through the origin that is disjoint
from the three triangles. This idea can be implemented in C2 to construct a connected, weakly
linearly convex domain that is not linearly convex.12)

Next consider general rational functions (quotients of polynomials). A compact setK is called
rationally convex if every point w outside K can be separated from K by a rational function
that is holomorphic on K [ fwg, that is, if there is a rational function f such that jf .w/j >
maxf jf .´/j W ´ 2 K g. In this definition, it does not much matter whether f is holomorphic at
the point w, for if f .w/ is undefined, then one can slightly perturb the coefficients of f to make
jf .w/j be a large finite number without changing the values of f on K very much.

Example 7. Every compact set K in C is rationally convex. Indeed, if w is a point outside K,
then the rational function 1=.´�w/ blows up atw, sow is not in the rationally convex hull ofK.
[For a suitably small positive �, the rational function 1=.´�w� �/ has larger modulus at w than
it does anywhere on K.]

There is a certain awkwardness in talking about multi-variable rational functions, because the
singularities can be either poles (where the modulus blows up) or points of indeterminacy (like
the origin for the function ´1=´2). Therefore it is convenient to rephrase the notion of rational
convexity in a way that uses only polynomials.

The notion of polynomial convexity involves separation by the modulus of a polynomial; it is
natural to introduce the modulus in order to write inequalities. But one could consider the weaker
separation property that a point w is separated from a compact set K if there is a polynomial p
such that the image of w under p is not contained in the image of K under p. The claim is that
this weaker separation property is identical to the notion of rational convexity.

Indeed, if the point p.w/ is not in the set p.K/, then for every sufficiently small positive �, the
function 1=.p.´/ � p.w/ � �/ is a rational function of ´ that is holomorphic in a neighborhood
of K and has larger modulus at w than it has anywhere on K. Conversely, if f is a rational

12A reference is Mats Andersson, Mikael Passare, and Ragnar Sigurdsson, Complex Convexity and Analytic Func-
tionals, Birkhäuser, 2004, Example 2.1.7.
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3 Convexity

function, holomorphic on K [ fwg, whose modulus separates w from K, then the function
1=.f .´/ � f .w// is a rational function of ´ that is holomorphic on K and singular at w; this
function can be rewritten as a quotient of polynomials, the denominator being a polynomial that
is equal to 0 at w and is nonzero on K.

Thus, a point w is in the rationally convex hull of a compact set K if and only if every poly-
nomial that is equal to zero at w also has a zero on K.

Exercise 19. The rationally convex hull of a compact subset of Cn is again a compact subset
of Cn.

Example 8 (the Hartogs triangle). The open set f .´1; ´2/ 2 C2 W j´1j < j´2j < 1 g is convex with
respect to the linear fractional functions, because through each boundary point passes a complex
line that does not intersect the domain. Indeed, the line where ´2 D 0 serves at the origin .0; 0/;
at any other boundary point where the two coordinates have equal modulus, there is some value
of � for which a suitable line is the one that sends the complex paramater � to .�; ei��/; and at
a boundary point where the second coordinate has modulus equal to 1, there is some value of �
for which the line where ´2 D ei� serves.

In particular, the open Hartogs triangle is a rationally convex domain, since there are more
rational functions than there are linear fractions. On the other hand, the open Hartogs triangle is
not polynomially convex. Indeed, consider the circle f .0; 1

2
ei�/ W 0 � � < 2� g: no point of the

disc bounded by this circle can be separated from the circle by a polynomial, so the polynomial
hull of the circle with respect to the open Hartogs triangle is not a compact subset of the triangle.

Next consider the closed Hartogs triangle, the set where j´1j � j´2j � 1. The rationally
convex hull of this compact set is the whole closed bidisc. Indeed, suppose p is a polynomial that
has no zero on the closed Hartogs triangle; by continuity, p has no zero in an open neighborhood
of the closed triangle. Consequently, the reciprocal 1=p is holomorphic in a Hartogs figure,
so by Theorem 4, the function 1=p extends to be holomorphic on the whole (closed) bidisc.
Therefore the polynomial p cannot have any zeroes in the bidisc. By the characterization of
rational convexity in terms of zeroes of polynomials, it follows that the rational hull of the closed
Hartogs triangle contains the whole bidisc; the rational hull cannot contain any other points,
since the rational hull is a subset of the convex hull.
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