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1 Integral Representations

Cauchy’s integral formula is the driving force in the elementary theory of one-dimensional
complex analysis. The following review of Cauchy’s formula is a springboard for the study
of integral representations in higher dimension.

1.1 Cauchy’s formula with remainder in C
Suppose that Ω is a bounded domain in C with class C1 boundary γ. (The boundary γ
is not necessarily connected: it may consist of several closed curves.) Suppose that f is a
class C1 function on the closure of Ω. Then

1

2πi

∮
γ

f(w)

w − z
dw − 1

π

∫∫
Ω

∂f/∂w

w − z
dAreaw =

{
f(z), z ∈ Ω,

0, z /∈ closure(Ω),
(1.1)

where the second integral is an absolutely convergent improper integral.
The proof is a standard calculation using Green’s theorem in complex form, which says

that if g is a class C1 function on the closure of Ω, then∮
γ

g(w) dw = 2i

∫
Ω

∂g

∂w
dAreaw.

If z is outside the closure of Ω, then 1/(w − z) has no singularity for w inside Ω, so the
second case of (1.1) follows immediately from this version of Green’s theorem. When z ∈ Ω,
Green’s theorem is not directly applicable to the first integral in (1.1), because the integrand
has a singularity inside Ω. One overcomes this difficulty by adding and subtracting the
integral over the boundary of a small disc B(z, ε) centered at z with radius ε:

1

2πi

∮
γ

f(w)

w − z
dw =

1

2πi

∮
bB(z,ε)

f(w)

w − z
dw +

1

2πi

(∮
γ

−
∮
bB(z,ε)

)
f(w)

w − z
dw

Green
=

1

2π

∫ 2π

0

f(z + εeiθ) dθ +
1

π

∫∫
Ω\B(z,ε)

∂f/∂w

w − z
dAreaw. (1.2)

When ε → 0, the first integral in (1.2) approaches the limit f(z), and the second integral
turns into the (convergent, improper) area integral in (1.1).
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1.2 Background on differential forms

Specializations

If the function f in Cauchy’s formula (1.1) is assumed additionally to be holomorphic,
then the formula reduces to the familiar version that represents a holomorphic function in
a domain by an integral of its boundary values:

f(z) =
1

2πi

∮
γ

f(w)

w − z
dw, z ∈ Ω. (1.3)

By specializing to the case of the unit disc, one can easily rewrite this

Gábor Szegő
(1895–1985)

formula in a different way. Using that w ·w = 1 on the boundary of the
unit disc and that w dw = i dσw (where dσw is the arc-length element
on the boundary of the unit disc), one finds that

f(z) =
1

2πi

∮
γ

f(w)

w(w − z)
w dw =

1

2π

∫
γ

f(w)

1− zw
dσ. (1.4)

The expression 1
2π
· 1

1−zw is the Szegő reproducing kernel function for the
unit disc.

In (1.4), the singularity of the integrand inside the unit disc D has

Stefan Bergman
(1895–1977)

evaporated. Consequently, one can rewrite the formula via Green’s
theorem as an area integral:

f(z) =
1

2πi

∮
γ

f(w)

w(w − z)
w dw =

1

π

∫
D

f(w)
∂

∂w

[
w

1− zw

]
dAreaw

=
1

π

∫
D

f(w)

(1− zw)2
dAreaw.

The expression 1
π
· 1

(1−zw)2
is the Bergman reproducing kernel function

for the unit disc.

1.2 Background on differential forms

The language of differential forms is essential for discussing integral representations in
dimensions greater than 1. There is no lack of systematic developments of differential
forms, ranging from Spivak’s little book [34] to Cartan’s course [6] to Lee’s graduate text
[21, Chapters 12–14]. For differential forms in the setting of complex analysis, one may
consult, for example, Range’s book [29, Chapter III].
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1.2 Background on differential forms

The aim of this section is to give a brief, unsystematic discussion of differential forms
that gives enough understanding of the notation to make it possible to proceed with the
complex analysis. The first goal is to attach a meaning to the symbol dxj.

One point of view is that dxj is merely a formal symbol used as a placeholder in inte-
gration. For example, if γ : [0, 1] → R2 is a curve with components γ1 and γ2, then the
integral ∫

γ

P (x1, x2) dx1 +Q(x1, x2) dx2 (1.5)

can be considered an abbreviation for the ordinary calculus integral∫ 1

0

{P (γ1(t), γ2(t))γ′1(t) +Q(γ1(t), γ2(t))γ′2(t)} dt. (1.6)

The other point of view is that dxj is an honest mathematical object. The differential
operator ∂/∂xj may be thought of as a basis element in a vector space (the space of “tangent
vectors”, which can be defined independently of coordinates as a space of equivalence classes
of tangent curves), and dxj may be viewed as the dual basis element in the dual vector
space. From this point of view, the “differential form” P dx1 +Qdx2 exists as an element of
a certain vector space, and the expression (1.6) serves to define the integral of a differential
form along a curve. The intuitive idea is that to integrate a differential form on a curve
(more generally, on a manifold), one “pulls back” the form to a flat coordinate system, and
in the flat coordinates one knows what integration should mean. The formula from one-
dimensional calculus about changing variables in an integral (“method of substitution”)
shows that the value of the integral along a curve is independent of the choice of coordinates,
as long as one preserves the orientation of the curve.

In the case of integration of a differential form of degree 1, the second interpretation of
the symbol dxj seems rather pedantic. In the case of integration over higher-dimensional
sets, however, the notation of differential forms is an essential tool.

The motivation for the definition of the “wedge product” of differential forms is the
formula from calculus for changing variables in multiple integrals. If Ω is a domain in Rn,
and T : Ω→ Rn is an invertible coordinate transformation, then∫

T (Ω)

f(y1, . . . , yn) dy1 . . . dyn =

∫
Ω

(f ◦ T )(x) | detDT | dx1 . . . dxn,

where DT is the derivative (Jacobian matrix) of T . The determinant is an alternating,
multilinear function of its rows, and this property underlies the definition of the product
of differential forms.

Viewed as formal symbols, differential forms of degree k are linear combinations of
expressions dxj1∧· · ·∧dxjk subject to the rules that dxj∧dxj = 0 and dxj∧dxk = −dxk∧dxj.
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1.2 Background on differential forms

Viewed as honest mathematical objects, differential k-forms are alternating, multilinear
forms on the Cartesian product of k copies of the tangent space.

To integrate a differential k-form on a k-dimensional manifold, one uses a partition of
unity (if necessary) to reduce to a problem in a single coordinate patch. Then one pulls
back the form to get an integral in flat coordinates, where one knows how to integrate after
“forgetting the wedges”. A significant technical point is that the orientation of the local
coordinates must be compatible with the orientation of the manifold.

Exercise 1.2.1. Let Γ denote the “upper” half of the unit sphere in R4, that is, the set of
points (x1, x2, x3, x4) such that x2

1 + x2
2 + x2

3 + x2
4 = 1 and x4 > 0. Orient Γ such that the

normal vector to the surface points “up” (that is, has a positive component in the direction
of increasing x4). Evaluate the integral∫

Γ

3x1x4 dx2 ∧ dx3 ∧ dx4 − x2
4 dx1 ∧ dx2 ∧ dx3 (1.7)

(a) by parametrizing the surface, and

(b) by applying Stokes’s theorem (that is,
∫
bΩ
ω =

∫
Ω
dω).

Answer: 4π/3.

In the preceding exercise, the form dx1 ∧ dx2 ∧ dx3 gives a negative orientation to Γ. If
a surface in Rn is the zero set of a function ρ and is oriented by the gradient vector ∇ρ,
then (according to the standard convention) a form ω of degree n − 1 on this surface is
compatibly oriented if the n-form dρ ∧ ω has the same sign as the volume form in Rn.

Exercise 1.2.2. Suppose that Ω is a domain in Rn, and ρ is a class C1 function such that
Ω = {x : ρ(x) < 0 } and bΩ = {x : ρ(x) = 0} and ∇ρ 6= 0 on bΩ. Orient bΩ compatibly
with ∇ρ. Writing

dx[j] := dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn, (1.8)

show that for every continuous function f on bΩ one has∫
bΩ

f(x) dx[j] =

∫
bΩ

f(x)(−1)j−1 ∂ρ/∂xj
|∇ρ(x)|

dSurfaceArea. (1.9)

Note that dSurfaceArea on the right-hand side represents the surface area measure on the
boundary in the sense of measure theory: it is not a differential form.
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1.3 The Bochner–Martinelli kernel

The standard orientation on Rn is dx1 ∧ · · · ∧ dxn, but there is no canonical orientation
on Cn. From now on, the assumption will be that Cn is oriented by the volume form dV
such that

dV = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn. (1.10)

This orientation agrees with the one used in the books by Krantz [18, p. 2], Range
[29, p. 133], and Rudin [32, pp. 335 and 344], but it differs from the orientation used
in Kytmanov’s book [19, p. 1]. Kytmanov takes the volume form to be dx1 ∧ · · · ∧ dxn ∧
dy1 ∧ · · · ∧ dyn, which differs from (1.10) by the factor (−1)n(n−1)/2.

Exercise 1.2.3. Verify the following relations.

dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn = (−2i)n dV (1.11)

dz ∧ dz := dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn = (−1)n(n−1)/2(−2i)n dV (1.12)

dz ∧ dz := dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn = (−1)n(n−1)/2(2i)n dV (1.13)

(dz1 ∧ dz1 + · · ·+ dzn ∧ dzn)n = n! (−2i)n dV (1.14)

1.3 The Bochner–Martinelli kernel

One useful feature of the Cauchy integral in one-dimensional complex analysis is that the
kernel is universal: it does not depend on the domain Ω. When n ≥ 2, one can write in Cn

an iterated Cauchy integral, which too has a universal kernel, but the integration is over a
set of real dimension n, not over the whole (2n−1)-dimensional boundary of a domain. The
Bochner–Martinelli integral is a universal representation formula for holomorphic functions
via integration over the whole boundary of a domain.

Definition 1.3.1. The Bochner–Martinelli kernel U(w, z) in Cn is a differential form of
bidegree (n, n− 1) given by the expression

cn

n∑
j=1

(−1)j−1(wj − zj)
|w − z|2n

dw[j] ∧ dw, (1.15)

where the dimensional constant cn := (−1)n(n−1)/2(n − 1)!/(2πi)n, the (0, n − 1)-form
dw[j] := dw1 ∧ · · · ∧ dwj−1 ∧ dwj+1 ∧ · · · ∧ dwn, and the (n, 0)-form dw := dw1 ∧ · · · ∧ dwn.
The sign of cn reflects the choice of orientation of Cn.

When n = 1, the Bochner–Martinelli kernel evidently reduces to the Cauchy kernel
1

2πi
· 1
w−z dw. When n ≥ 2, however, the Bochner–Martinelli kernel differs significantly from

the iterated Cauchy kernel. First of all, the iterated Cauchy kernel is an (n, 0)-form, while
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1.3 The Bochner–Martinelli kernel

the Bochner–Martinelli kernel is an (n, n− 1)-form, so the two kernels are integrated over
manifolds of different dimensions. Secondly, the Bochner–Martinelli kernel (1.15) is not
holomorphic in the free variable z. Nonetheless, the Bochner–Martinelli kernel is useful in
the study of holomorphic functions because of the following key property:

dwU(w, z) = ∂wU(w, z) = 0 when w 6= z. (1.16)

The first equality holds trivially by degree considerations. The following straightforward
computation shows that U(w, z) is ∂w-closed:

∂wU(w, z) = cn

n∑
j=1

∂

∂wj

(
(wj − zj)(|w − z|2)−n

)
dw ∧ dw

= cn

n∑
j=1

(
(|w − z|2)−n − n(wj − zj)(wj − zj)(|w − z|2)−(n+1)

)
dw ∧ dw

= cn

(
n

|w − z|2n
− n |w − z|

2

|w − z|2n+2

)
dw ∧ dw = 0.

An alternate expression for the Bochner–Martinelli kernel (1.15) is illuminating:

U(w, z) =
(−1)ncn
n− 1

∂

(
1

|w − z|2n−2

)
∧

n∑
j=1

dw[j] ∧ dw[j] when n ≥ 2, (1.17)

as a routine calculation shows. Since |w − z|−(2n−2) is (a constant times) the fundamental
solution for the Laplace operator ∆ in Cn (viewed as R2n), the expression (1.17) shows
that the coefficients of the Bochner–Martinelli kernel are harmonic functions of z.

Lemma 1.3.2. If r > 0, then
∫
w∈bB(z,r)

U(w, z) = 1, independently of r.

Proof. Let ξ be a new variable in Cn such that w = z + rξ. Then U(w, z) = U(rξ, 0) =

cn
∑n

j=1

(−1)jξj
|ξ|2n dξ[j] ∧ dξ. By Stokes’s theorem,

∫
w∈bB(z,r)

U(w, z) = cn

∫
ξ∈bB(0,1)

n∑
j=1

(−1)jξj dξ[j] ∧ dξ = cn

∫
B(0,1)

n dξ ∧ dξ.

The volume of the unit ball in Cn is equal to πn/n! (see the following exercise), so by
equation (1.13), the integral on the right-hand side equals ncn(−1)n(n−1)/2(2i)nπn/n!, which
reduces to 1 by the choice of cn.
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1.3 The Bochner–Martinelli kernel

Exercise 1.3.3. Show that the surface area of the unit ball in Cn is equal to 2πn/(n−1)!,
and the volume of the unit ball in Cn is equal to πn/n!.
Hint : To calculate the surface area σn, compute

∫
Cn e

−|z|2 dVz first in rectangular coordi-

nates as
(∫

C e
−(x2+y2) dx dy

)n
and then in spherical coordinates as

∫∞
0
σnr

2n−1e−r
2
dr, and

compare the answers. To calculate the volume, integrate in spherical coordinates using the
expression for σn. For more about this trick, see [7] and its references.

Theorem 1.3.4. Suppose that Ω is a bounded domain in Cn with class C1 boundary, and
f is a function of class C1 on the closure of Ω. Then∫

bΩ

f(w)U(w, z)−
∫

Ω

∂f(w) ∧ U(w, z) =

{
f(z), z ∈ Ω,

0, z /∈ closure(Ω).
(1.18)

The second integral in (1.18) is an absolutely convergent improper integral, because when
w approaches z, the Bochner–Martinelli kernel has a singularity of order |w − z|−(2n−1).

Corollary 1.3.5 (Bochner–Martinelli formula). If additionally f is holomorphic in Ω,
then ∫

bΩ

f(w)U(w, z) =

{
f(z), z ∈ Ω,

0, z /∈ closure(Ω).
(1.19)

Proof of Theorem 1.3.4. The idea is the same as in the proof of Cauchy’s formula with
remainder. Because dwU(w, z) = 0 when w 6= z, and U(w, z) has bidegree (n, n − 1), one
has that dw(f(w)U(w, z)) = ∂f(w)∧U(w, z). If z is outside the closure of Ω, then U(w, z)
has no singularity for w inside Ω, and the second case of (1.18) follows immediately from
Stokes’s theorem.

When z ∈ Ω, one should add and subtract the integral over a ball B(z, ε) centered
at z with radius ε, apply Stokes’s formula, add and subtract f(z) in the integrand of the
boundary integral, and take the limit as ε→ 0. Thus∫

bΩ

f(w)U(w, z) =

∫
bB(z,ε)

f(w)U(w, z) +

(∫
bΩ

−
∫
bB(z,ε)

)
f(w)U(w, z)

Stokes
=

∫
bB(z,ε)

(f(w)− f(z))U(w, z) +

∫
bB(z,ε)

f(z)U(w, z) +

∫
Ω\B(z,ε)

∂f(w) ∧ U(w, z).

(1.20)

When w ∈ bB(z, ε), the coefficients of U(w, z) are of order ε−(2n−1), while the surface area
of bB(z, ε) is of order ε2n−1. Since |f(w)− f(z)| = O(|w − z|) = O(ε) when w ∈ bB(z, ε),
the first integral in the second line of (1.20) tends to 0 with ε. By Lemma 1.3.2, the second
integral equals f(z). The third term tends in the limit to the (convergent, improper)
volume integral in (1.18).
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1.3 The Bochner–Martinelli kernel

1.3.1 Example: the unit ball

Although the Bochner–Martinelli kernel does not depend on the domain when the kernel is
displayed as a differential form, the expression of the kernel does change with the domain
if the kernel is written as a function times surface area measure. Using Exercises 1.2.2
and 1.2.3, one can compute that if a domain Ω has defining function ρ, then

dw[j] ∧ dw|bΩ = (−1)n(n−1)/2(2i)n(−1)j−1∂ρ/∂wj
|∇ρ|

dSurfaceAreaw. (1.21)

Consequently, the definition (1.15) can be rewritten as follows in terms of the function ρ
defining the boundary:

U(w, z) =
(n− 1)!

πn

n∑
j=1

∂ρ/∂wj
|∇ρ|

· wj − zj
|w − z|2n

dSurfaceAreaw. (1.22)

A natural choice for the defining function ρ of the unit ball in Cn is
∑n

j=1 |wj|2−1. Then
|∇ρ| = 2 on the boundary of the unit ball, and ∂ρ/∂wj = wj. Writing 〈w, z〉 for

∑n
j=1wjzj

and using that 〈w,w〉 = 1 on the boundary of the ball gives that

U(w, z) =
(n− 1)!

2πn
· 1− 〈w, z〉
|w − z|2n

dSurfaceAreaw for the unit ball. (1.23)

Since the Bochner–Martinelli kernel reproduces the constant function 1 (in particular),
evaluating for z equal to 0 shows that the constant (n − 1)!/2πn is the reciprocal of the
surface area of the unit ball (compare Exercise 1.3.3). It is interesting to compare (1.23)
with the expression for the Poisson kernel P (w, z) for the unit ball:

P (w, z) =
(n− 1)!

2πn
· 1− |z|2

|w − z|2n
dSurfaceAreaw. (1.24)

1.3.2 First application: basic properties of holomorphic functions

Often one begins a course in complex function theory by defining functions to be holomor-
phic if they are of class C1 and satisfy the Cauchy–Riemann equations. Then one needs to
show that such functions automatically are class C∞. One can prove this property by us-
ing the iterated Cauchy integral, but the Bochner–Martinelli integral representation (1.19)
serves equally well. One can differentiate under the integral sign in (1.19) to see that
holomorphic functions are class C∞.

Next one would like to have estimates of Cauchy type for the derivatives of holomorphic
functions. In (1.22), the kernel is O(r−(2n−1)) for w in bB(z, r), and each differentiation
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1.3 The Bochner–Martinelli kernel

with respect to z worsens this estimate by one power of r. Therefore one sees immediately
that for each multi-index α there is a constant Cα such that if M is an upper bound for
|f(w)| on B(z, r), then

|∂αf(z)| ≤ CαM/r|α|.

The preceding properties of holomorphic functions drive the elementary theory: for
instance, the existence of convergent power series expansions, Liouville’s theorem, and
arguments about normal families.

1.3.3 Second application: solving ∂ with compact support

One of the important features of complex analysis in Cn that holds when n ≥ 2 but
not when n = 1 is the solvability of the inhomogeneous Cauchy–Riemann equations with
compact support. Since this result depends on the dimension, it is part of the “non-
elementary” theory of complex analysis. One can use the Bochner–Martinelli kernel to
give an explicit formula for the solution of the ∂-problem with compact support.

Theorem 1.3.6. Suppose n ≥ 2, and g is a compactly supported (0, 1)-form in Cn of
class C1 that is ∂-closed: namely, if g(z) =

∑n
j=1 gj(z) dzj, then ∂gj/∂zk = ∂gk/∂zj for

all j and k. If

f(z) := −
∫
Cn

g(w) ∧ U(w, z),

then f is a compactly supported function such that ∂f = g.

Proof. Introduce a new variable ξ equal to the difference w − z. Then

f(z) = −
∫
Cn

n∑
j=1

gj(ξ + z) dξj ∧ U(ξ, 0).

Differentiate under the integral sign, using that

∂

∂zk
(gj(ξ + z)) =

∂

∂ξk
(gj(ξ + z)),

and then change variables back again to get that

∂f

∂zk
(z) = −

∫
Cn

n∑
j=1

∂gj
∂wk

(w) dwj ∧ U(w, z).

Use the hypothesis that ∂gj/∂wk = ∂gk/∂wj to obtain that

∂f

∂zk
(z) = −

∫
Cn

∂gk ∧ U(w, z).

11



1.3 The Bochner–Martinelli kernel

On the other hand, applying Theorem 1.3.4 to gk on a large ball containing both the
support of g (so that the boundary integral in (1.18) vanishes) and the point z yields that

gk(z) = −
∫
Cn

∂gk(w) ∧ U(w, z).

Comparing the preceding two formulas shows that ∂f/∂zk = gk for an arbitrary k. Hence
∂f = g, as claimed.

It remains to show that f has compact support. This part of the argument uses in a
crucial way that n ≥ 2. Since ∂f = g, the function f is holomorphic on the complement
of the support of g. Let R be a positive real number such that the ball B(0, R) contains
the support of g, and fix values of z2, . . . , zn such that min(|z2|, . . . , |zn|) > R. Then
f(z1, z2, . . . , zn) is an entire holomorphic function of z1. It is evident from the explicit form
of the Bochner–Martinelli kernel (1.15) and the definition of f that f(z1, z2, . . . , zn) → 0
when |z1| → ∞. The only entire function of z1 that tends to 0 at infinity is the 0 function.
Thus f(z1, z2, . . . , zn) = 0 when min(|z2|, . . . , |zn|) > R. Since f is holomorphic on the
complement of the support of g, it follows that f is identically equal to 0 on the unbounded
component of the complement of the support of g. Thus f has compact support.

Once one knows how to solve the ∂-equation with compact support, one can prove
a version of the theorem of Hartogs about continuation of holomorphic functions across
compact holes. See, for example, Hörmander’s book [10, pp. 30–31]. One can, however,
prove the theorem of Hartogs directly and explicitly from the Bochner–Martinelli integral
representation, and this is the next topic.

1.3.4 The Hartogs phenomenon

One version of the theorem of Hartogs is the following.

Theorem 1.3.7. Suppose n ≥ 2. Let K be a compact subset of a bounded domain Ω in Cn

such that Ω \ K is connected. The every function that is holomorphic on Ω \ K is the
restriction to Ω \K of a function that is holomorphic on Ω.

Proof. Suppose f is a holomorphic function on Ω \ K. By shrinking Ω, one can assume
without loss of generality that Ω has class C1 boundary and that f is holomorphic in a
neighborhood of bΩ in Cn. If there is a holomorphic extension F of f into all of Ω, then that
extension is represented by the Bochner–Martinelli formula (1.19), so there is a natural
way to define a candidate extension: namely,

F (z) :=

∫
bΩ

f(w)U(w, z), z /∈ bΩ.
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1.3 The Bochner–Martinelli kernel

Two properties need to be verified: first, that F is holomorphic in Ω, and second, that
F agrees with f on some open subset of Ω \K.

Verifying the first property requires a key identity, which says that the derivative of the
Bochner–Martinelli kernel U(w, z) with respect to zk is ∂w-exact.

Lemma 1.3.8. When w 6= z, the Bochner–Martinelli kernel U(w, z) satisfies for each k
the following property:

∂

∂zk
U(w, z) = ∂wVk(w, z),

where

Vk(w, z) := cn
∑
j 6=k

(−1)j+k+ε(j,k) wj − zj
|w − z|2n

dw[j, k] ∧ dw.

The notation dw[j, k] means that dwj and dwk have been omitted from the wedge product
(the other differentials being in increasing order), and the symbol ε(j, k) equals 0 if j < k
and 1 if j > k. The constant cn is the same as in Definition 1.3.1.

Accepting this identity for the moment, observe that

∂F

∂zk
=

∫
bΩ

f(w) ∂wVk(w, z) =

∫
bΩ

∂w(f(w)Vk(w, z))

because f is holomorphic in a neighborhood of bΩ. Since the form Vk has bidegree (n, n−2),
one has that ∂w(f(w)Vk(w, z)) = dw(f(w)Vk(w, z)). Therefore ∂F/∂zk, being the integral
of an exact form over bΩ, is equal to 0. Thus F is holomorphic where it is defined: namely,
both in the interior of Ω and in the complement of the closure of Ω.

Moreover, the same argument as at the end of the preceding section shows that F is
identically equal to 0 in the unbounded component of the complement of the closure of Ω:
namely, the explicit form of the Bochner–Martinelli kernel shows that F (z1, . . . , zn) → 0
when |z1| → ∞, and when min(|z2|, . . . , |zn|) is sufficiently large, the function F (z1, . . . , zn)
is holomorphic on the entire z1 plane.

Let Ω′ denote a relatively compact subdomain of Ω such that Ω \ closure(Ω′) is con-
nected, K ⊂ Ω′, and Ω′ has class C1 boundary. The preceding argument shows that∫
bΩ′
f(z)U(w, z) is identically equal to 0 when z is in the unbounded component of the

complement of the closure of Ω′, in particular, when z ∈ Ω \ closure(Ω′). On the other
hand, applying the Bochner–Martinelli representation (1.18) to the domain Ω \ closure(Ω′)
shows that

f(z) =

∫
bΩ

f(w)U(w, z)−
∫
bΩ′
f(w)U(w, z), z ∈ Ω \ closure(Ω′),

since ∂f = 0 in Ω\Ω′. The first term on the right-hand side is equal to F (z), and the second
term—as just observed—is equal to 0. Therefore the holomorphic functions f and F are

13



1.3 The Bochner–Martinelli kernel

equal on an open subset of the connected open set Ω \K, and hence on all of Ω \K. Thus
F is, as claimed, a holomorphic extension of f from Ω \K to Ω.

It remains to prove Lemma 1.3.8. The essence of the lemma is the following routine
calculation for harmonic functions, which may be interpreted as saying that the difference
of two particular (n− 1, n− 1) forms is ∂-closed.

Exercise 1.3.9. If g is a harmonic function, then for each k one has that

∂

(
∂g

∂wk

)
∧

n∑
j=1

dw[j] ∧ dw[j] = (−1)k∂∂g(w) ∧
∑
j 6=k

(−1)ε(j,k)dw[j, k] ∧ dw[j].

Hint : Harmonicity means that
∑
j 6=k

∂2g

∂wj∂wj
= − ∂2g

∂wk∂wk
.

To apply the exercise, differentiate representation (1.17) for the Bochner–Martinelli ker-
nel with respect to zk, observe that ∂|w − z|2/∂zk = −∂|w − z|2/∂wk, and set g(w)
equal to the function 1/|w − z|2n−2 (which, as previously observed, is harmonic when
w 6= z). Since ∂U/∂zk equals the left-hand side of the exercise multiplied by the constant
(−1)n+1cn/(n− 1), and ∂∂ = −∂∂, the exercise implies that ∂U/∂zk is equal to ∂w of the
form

(−1)n+k cn
n− 1

∂g(w) ∧
∑
j 6=k

(−1)ε(j,k) dw[j, k] ∧ dw[j].

Since ∂g(w) =
∑n

j=1(−1)(n− 1)((wj − zj)/|w − z|2n) dwj, the preceding quantity is equal
to the expression given for Vk(w, z) in the statement of Lemma 1.3.8.

1.3.5 Functions reproduced by the Bochner–Martinelli integral

The Bochner–Martinelli formula (1.19) says that holomorphic functions in a domain are
reproduced by integration against the Bochner–Martinelli kernel on the boundary. Are
there any other functions that the Bochner–Martinelli integral reproduces? (The Poisson
integral, for instance, reproduces not only holomorphic functions but also harmonic func-
tions.) The answer to the question is negative, and this observation indicates that the
Bochner–Martinelli kernel is in some sense the “right” kernel for studying holomorphic
functions (although not necessarily the only right kernel).

Theorem 1.3.10. Let Ω be a bounded domain in Cn with class C1 boundary. Suppose f is
a function of class C1 on the closure of Ω such that

f(z) =

∫
bΩ

f(w)U(w, z) for all z ∈ Ω.

Then f is holomorphic in Ω.

14



1.3 The Bochner–Martinelli kernel

Proof. The goal is to show that ∂f = 0 in Ω. In view of version (1.18) of the Bochner–
Martinelli formula with remainder, the hypothesis of the theorem implies that∫

Ω

∂f(w) ∧ U(w, z) = 0, z ∈ Ω. (1.25)

Thus the (0, 1)-form ∂f is “orthogonal” to a large collection of (n, n − 1)-forms. Is this
information enough to conclude that ∂f is the 0 form?

The proof involves three steps. First one shows that ∂f is orthogonal to a larger class of
forms. Then one transfers the problem to the boundary. Finally a density lemma finishes
the argument.

A preliminary observation is that the hypothesis of the theorem implies at least that f is
a (complex-valued) harmonic function in Ω, for the coefficients of the Bochner–Martinelli
kernel (1.15) are harmonic functions. The harmonicity of f implies that the (n − 1, n)
form ∂f(z) ∧

∑n
j=1 dz[j] ∧ dz[j] is a closed form in Ω, and this property will be used in a

moment.
By hypothesis ∂f has bounded coefficients in Ω, so the explicit form of the Bochner–

Martinelli kernel yields that the integral in (1.25) is a continuous function of z not only
for z in Ω but for z throughout Cn.

Exercise 1.3.11. Verify the preceding statement. (The integral is a convergent improper
integral, but none of the standard convergence theorems for integrals is directly applicable.)

In particular, the integral in (1.25) vanishes for z on bΩ. Since the integral represents a
harmonic function of z in the interior of the complement of Ω, the integral vanishes on the
bounded components of the complement of Ω. Moreover, the explicit form of the Bochner–
Martinelli kernel shows that the integral tends to 0 at infinity, so the integral also vanishes
on the unbounded component of the complement of Ω. In summary, the integral in (1.25)
is identically equal to 0 for all z in Cn, not just for z in Ω.

In view of expression (1.17) for the Bochner–Martinelli kernel, an equivalent statement
is that ∫

Ω

d

(
1

|w − z|2n−2
∂f(w) ∧

n∑
j=1

dw[j] ∧ dw[j]

)
= 0, z ∈ Cn,

because, as observed above, the form ∂f(w) ∧
∑n

j=1 dw[j] ∧ dw[j] is closed. If z ∈ Ω, then
Stokes’s theorem implies that

lim
ε→0

(∫
bΩ

−
∫
bB(z,ε)

)
1

|w − z|2n−2
∂f(w) ∧

n∑
j=1

dw[j] ∧ dw[j] = 0.

15



1.3 The Bochner–Martinelli kernel

Since the surface area of the boundary of the ball B(z, ε) is proportional to ε2n−1, while
|w−z|−(2n−2) = O(ε−(2n−2)) when w ∈ bB(z, ε), the integral over bB(z, ε) tends to 0 with ε.
Thus ∫

bΩ

1

|w − z|2n−2
∂f(w) ∧

n∑
j=1

dw[j] ∧ dw[j] = 0, z ∈ Ω.

A similar argument, without taking a limit, shows that the preceding integral vanishes also
when z is outside the closure of Ω. The following density lemma now comes into play.

Lemma 1.3.12. Every continuous function h(w) on bΩ can be uniformly approximated by
linear combinations of the functions 1/|w − z|−(2n−2), where z /∈ bΩ.

Assume the lemma for the moment. The function f is continuous on bΩ by hypothesis,
so ∫

bΩ

f(w) ∂f(w) ∧
n∑
j=1

dw[j] ∧ dw[j] = 0.

The closedness of the form ∂f(w) ∧
∑n

j=1 dw[j] ∧ dw[j] implies by Stokes’s theorem that∫
Ω

∂f(w) ∧ ∂f(w) ∧
n∑
j=1

dw[j] ∧ dw[j] = 0,

or, equivalently, that ∫
Ω

n∑
j=1

∣∣∣∣ ∂f∂zj
∣∣∣∣2 dV = 0.

Thus f is holomorphic, as claimed.
To complete the proof of the theorem, it remains to prove Lemma 1.3.12. The idea of

the argument goes back to a paper of M. V. Keldysh and M. A. Lavrent′ev [14] (reprinted
in [13]). It suffices to approximate functions that are restrictions to bΩ of class C1 functions
in Cn, because such functions are dense in the continuous functions on bΩ (by the Stone–
Weierstrass theorem, for instance). Fix such a function h, and write the Bochner–Martinelli
representation (1.18) for h on a large ball B that contains the closure of Ω:

h(z) =

∫
bB

h(w)U(w, z)−
∫
B

∂h(w) ∧ U(w, z), z ∈ bΩ.

To approximate h(z) on bΩ, approximate each of the integrals by Riemann sums. (The
second integral is an absolutely convergent improper integral, so one can first delete from
the integration region an arbitrarily small neighborhood of bΩ, making an arbitrarily small
error in the approximation.) In view of the expression (1.17) for the Bochner–Martinelli
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1.3 The Bochner–Martinelli kernel

kernel, the terms in the Riemann sums are linear combinations of derivatives of the func-
tions 1/|w − z|−(2n−2) for w /∈ bΩ (notice that the variables are interchanged from the
statement of the lemma). Approximating those derivatives by difference quotients com-
pletes the proof of the Lemma 1.3.12. That concludes the proof of Theorem 1.3.10.

Exercise 1.3.13. Show that if f is a class C1 function on the closure of Ω, where Ω has
defining function ρ, then

∂f(z) ∧
n∑
j=1

dz[j] ∧ dz[j]

∣∣∣∣
bΩ

=
n∑
j=1

(−1)j−1 ∂f

∂zj
dz ∧ dz[j]

∣∣∣∣
bΩ

= (−1)n(n+1)/2(2i)n|∇ρ|−1

n∑
j=1

∂f

∂zj

∂ρ

∂zj
dSurfaceArea.

The expression
n∑
j=1

∂f

∂zj

∂ρ

∂zj
is a “complex normal derivative” of f on the boundary, and

the proof of Theorem 1.3.10 may be interpreted as saying that this derivative vanishes
identically on the boundary.

1.3.6 The spectrum for the ball

This section revisits the case of the unit ball B in Cn to determine the eigenvalues and
the eigenfunctions of the Bochner–Martinelli integral explicitly. First some background on
spherical harmonics is needed.

A function f is called homogeneous of degree k if f(λx) = λkf(x) when λ > 0 and x is
arbitrary. The restriction to the sphere (that is, the boundary of the ball) of a harmonic
polynomial that is homogeneous of degree k is called a spherical harmonic of degree k. In
the plane, for example, the restriction to the unit circle of the function xy is a spherical
harmonic of degree 2. In C2, the restriction to the boundary of the unit ball of the function
z1z2z

2
1 − z2

2z1z2 is a spherical harmonic of degree 4.
The notion of spherical harmonic makes sense in real space RN as well as in com-

plex space Cn. In complex space, one can make the following finer gradation about the
degree. If s and t are fixed nonnegative integers, and q is a polynomial of the form∑
|α|=s

∑
|β|=t c(α, β)zαzβ, then one says that q is homogeneous of bidegree (s, t).

Remark 1.3.14. When q is a polynomial in the underlying real coordinates, there is an
ambiguity about how to denote the function q as a function of the complex coordinates.
One might write q(z, z) to indicate that q is a polynomial in z and z. Alternatively,
since z and z are not actually independent quantities, one might write q(z) to mean the
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1.3 The Bochner–Martinelli kernel

function q evaluated at the point in R2n corresponding to the point z in Cn. These notes
use the second convention. One has to keep in mind, then, that q(z) is not in general a
holomorphic function of z when q is a “polynomial”.

Let H(s, t) denote the space of spherical harmonics of bidegree (s, t), that is, the space
of restrictions to the boundary of the unit ball of harmonic, homogeneous polynomials of
bidegree (s, t).

Lemma 1.3.15. When n ≥ 2, the Hilbert space L2(bB, dSurfaceArea) of square-integrable
functions on the boundary of the unit ball is the orthogonal direct sum of the finite-
dimensional subspaces H(s, t) as s and t run over the non-negative integers.

Exercise 1.3.16. Show that when n = 1, the space H(s, t) is trivial when s and t are
simultaneously nonzero, and the space of square-integrable functions on the unit circle is
the orthogonal direct sum of the finite-dimensional subspaces H(s, 0) and H(0, t) as s and t
run over the non-negative integers. (The space H(0, 0) is counted only once.)

Assume the lemma for the moment. The next proposition says that the Bochner–
Martinelli integral of a spherical harmonic of bidegree (s, t) is very simple: the result
is the same harmonic polynomial multiplied by a constant.

Proposition 1.3.17. If q is a harmonic polynomial of bidegree (s, t), then the Bochner–
Martinelli integral ∫

bB

q(w)U(w, z) =
n+ s− 1

n+ s+ t− 1
q(z), z ∈ B. (1.26)

Proof. The computation uses the following complex version of the Euler formula for ho-
mogeneous functions.

Exercise 1.3.18. If q is a harmonic polynomial of bidegree (s, t), then

n∑
j=1

zj
∂q

∂zj
= sq(z) and

n∑
j=1

zj
∂q

∂zj
= tq(z).

Hint : Compute
d

dλ
(λz)α zβ

∣∣
λ=1

first by using the chain rule and then by using homogeneity.

The explicit formulas (1.23) and (1.24) for the Bochner–Martinelli kernel U(w, z) and
the Poisson kernel P (w, z) of the ball show that∫

bB

q(w)U(w, z) =

∫
bB

q(w)
1− 〈w, z〉
1− |z|2

P (w, z)

=
1

1− |z|2

(
q(z)−

n∑
j=1

zj

∫
bB

wjq(w)P (w, z)

)
, z ∈ B.

(1.27)
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1.3 The Bochner–Martinelli kernel

The Poisson integral does not reproduce the polynomial wjq(w), because the harmonicity
of q(w) is not inherited by wjq(w). In fact,

n∑
k=1

∂2

∂wk∂wk
(wjq(w)) =

∂q

∂wj
.

The Poisson integral of wjq(w) should differ from wjq(w) by a function that has the same
Laplacian but that vanishes at the boundary. Observe that

n∑
k=1

∂2

∂wk∂wk

(
(1− |w|2)

∂q

∂wj

)
= −n ∂q

∂wj
−

n∑
k=1

(
wk

∂

∂wk
+ wk

∂

∂wk

)
∂q

∂wj
.

Since ∂q/∂wj has bi-homogeneity (s, t−1), Exercise 1.3.18 implies that the right-hand side
reduces to

−(n+ s+ t− 1)
∂q

∂wj
.

Consequently, the Poisson integral of wjq(w) equals the harmonic function

wjq(w) +
1

n+ s+ t− 1
(1− |w|2)

∂q

∂wj
.

Thus (1.27) implies that∫
bB

q(w)U(w, z) =
1

1− |z|2

(
q(z)− |z|2q(z)− 1

n+ s+ t− 1
(1− |z|2)

n∑
j=1

zj
∂q

∂zj

)
,

and another application of Exercise 1.3.18 shows that the right-hand side reduces to

q(z)

(
1− t

n+ s+ t− 1

)
.

The desired conclusion (1.26) follows.

Let M denote the operator that takes a function on the boundary of the ball, computes
the Bochner–Martinelli integral, and restricts the result to the boundary of the ball. It is
not clear a priori that this operator M makes sense on general square-integrable functions
on the boundary. The preceding proposition, however, implies that M is well defined
on each subspace H(s, t) as an operator of norm 1 or less. Lemma 1.3.15 implies that
M extends to L2(bB, dSurfaceArea) as a bounded operator of norm 1. Thus the Bochner–
Martinelli integral of a square-integrable function on bB, which a priori exists only as a
function inside B, has in a natural way boundary values in L2(bB, dSurfaceArea).
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Exercise 1.3.16 implies that when n = 1, the eigenvalues of the operator M are 0 and 1.
When n ≥ 2, the situation is completely different. The following theorem can be read
off from the explicit form of the eigenvalues in Lemma 1.3.17 (with more or less ease,
depending on what facts one knows from functional analysis).

Theorem 1.3.19. Suppose n ≥ 2. The Bochner–Martinelli operator M acting on the space
L2(bB, dSurfaceArea) has every rational number in the interval (0, 1] as an eigenvalue of
infinite multiplicity. The operator M is a self-adjoint operator of norm 1. The spectrum
of M is the interval [0, 1]. The iterates M j (j = 1, 2, . . . ) converge in the strong operator
topology to the orthogonal projection onto the subspace of L2(bB, dSurfaceArea) consisting
of boundary values of holomorphic functions.

This theorem is due to A. V. Romanov [30]. The exposition above follows the book of
Kytmanov [19, §5.1].

Proof of Theorem 1.3.19. If r is a rational number in (0, 1], then there are infinitely many
ways to write r in the form p/q, where p and q are integers greater than n (not necessarily
coprime). Proposition 1.3.17 implies that when s = p + 1 − n and t = q − p, the rational
number p/q is an eigenvalue of M on the subspace H(s, t). Thus the rational number r is
an eigenvalue of infinite multiplicity.

Because of the orthogonal direct-sum decomposition of L2(bB, dSurfaceArea) given in
Lemma 1.3.15, one can deduce properties of M from the knowledge of the eigenvalues.
Since all the eigenvalues are in the interval (0, 1], and 1 is an eigenvalue, the operator M
has norm equal to 1. Since all the eigenvalues are real, M is self-adjoint.

Since M is self-adjoint, the spectrum of M (that is, the set of complex numbers λ for
which (M − λI) is not invertible) is a closed subset of the real line. Hence the spectrum
contains the closed interval [0, 1]. If λ > 1, then λ is not in the spectrum of M , because
(M − λI)−1 is represented by the convergent series −λ−1

∑∞
j=0(M/λ)j. When λ < 0, then

λ is not in the spectrum of M , because (M −λI)−1 is represented by the convergent series
−(λ − 1

2
)−1
∑∞

j=0(λ − 1
2
)−j(M − 1

2
I)j. Thus the spectrum of M is precisely the interval

[0, 1].
What convergence of the iterates M j in the strong operator topology means is that for

each fixed element f of L2(bB, dSurfaceArea), the functions M j(f) converge in norm. In
view of the orthogonal direct-sum decomposition of Lemma 1.3.15, and the property that
the eigenvalues of M are in the interval (0, 1], it is evident that M j(f) converges to the
projection of f onto the eigenspace corresponding to eigenvalue 1. That eigenspace is the
direct sum of the subspaces H(s, 0), where s ≥ 0: namely, the subspace of boundary values
of holomorphic functions. This orthogonal projection from L2(bB, dSurfaceArea) onto the
boundary values of holomorphic functions is the Szegő projection of the ball.
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It remains to prove Lemma 1.3.15 about the decomposition of L2(bB, dSurfaceArea) into
the direct sum of orthogonal subspaces of spherical harmonics of different bidegrees.

Proof of Lemma 1.3.15. To check the orthogonality, suppose that q1 and q2 are spherical
harmonics of bidegrees (s1, t1) and (s2, t2). It suffices to show that

s1

∫
bB

q1(w)q2(w) dSurfaceAreaw = s2

∫
bB

q1(w)q2(w) dSurfaceAreaw

and

t1

∫
bB

q1(w)q2(w) dSurfaceAreaw = t2

∫
bB

q1(w)q2(w) dSurfaceAreaw.

The first case reduces to the second case via conjugation. To check the second case, observe
by Exercise 1.3.18 that

t1

∫
bB

q1(w)q2(w) dSurfaceAreaw =

∫
bB

n∑
j=1

wj
∂q1

∂wj
q2(w) dSurfaceAreaw.

Using |w|2 − 1 as the defining function ρ(w) for the unit ball, one sees by Exercise 1.3.13
that the integral on the right-hand side equals

(−1)n(n+1)/2 2

(2i)n

∫
bB

q2(w) ∂q1(w) ∧
n∑
j=1

dw[j] ∧ dw[j].

Since q1 is harmonic, the form ∂q1(w) ∧
∑n

j=1 dw[j] ∧ dw[j] is closed, so Stokes’s theorem
converts the expression into

(−1)n(n+1)/2 2

(2i)n

∫
B

∂q2(w) ∧ ∂q1(w) ∧
n∑
j=1

dw[j] ∧ dw[j].

A parallel computation shows that t2
∫
bB
q1(w)q2(w) dSurfaceAreaw equals the same expres-

sion multiplied by (−1)n+1+(n−1)2 . Since that sign equals +1, the orthogonality is proved.
It remains to show that linear combinations of spherical harmonics are dense in the

space of square-integrable functions on bB. Since polynomials are dense in the continuous
functions on bB (by the Stone–Weierstrass theorem), and hence in the square-integrable
functions, it suffices to show that the restriction of an arbitrary homogeneous polynomial
to the boundary of the ball is a linear combination of spherical harmonics.

Lemma 1.3.20. If q is a homogeneous polynomial in Cn, then

∆
(
|z|2jq(z)

)
= |z|2j∆q(z) + 4j(n+ j − 1 + deg(q))|z|2j−2q(z).
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Proof. Write the Laplace operator ∆ in complex form and compute:

n∑
l=1

4
∂2

∂zl∂zl

( n∑
m=1

zmzm

)j
q(z) =

n∑
l=1

4
∂

∂zl

[
|z|2j ∂q

∂zl
+ jq(z)|z|2j−2zl

]
=

n∑
l=1

4

(
|z|2j ∂2q

∂zl∂zl
+j|z|2j−2zl

∂q

∂zl
+j|z|2j−2zl

∂q

∂zl
+jq(z)|z|2j−2+j(j−1)q(z)|z|2j−4zlzl

)
.

The first term of the sum equals |z|2j∆q(z). By Exercise 1.3.18, the next two terms of the
sum simplify to 4j deg(q)q(z)|z|2j−2. The fourth term yields 4jnq(z)|z|2j−2, and the final
term contributes 4j(j − 1)q(z)|z|2j−2. The equation in the lemma follows.

With the lemma in hand, one can obtain the following representation for homogeneous
polynomials.

Exercise 1.3.21. There are numbers bj(k) such that for every homogeneous polynomial p
in Cn of degree k, the difference

p(z)−
bk/2c∑
j=1

bj(k)|z|2j∆jp(z)

is harmonic. The numbers bj(k) may be determined recursively: 1/b1(k) = 4(n + k − 2),
and −bj/bj+1 = 4(j + 1)(n+ k − j − 2) when j ≥ 1.

The exercise implies that the restriction of a homogeneous polynomial of degree k to the
boundary of the ball is equal to a spherical harmonic of degree k plus a sum of restrictions
of polynomials of lower degrees (since |z|2 = 1 on the boundary). It follows by induction
that the restriction of a homogeneous polynomial of arbitrary degree to the boundary of
the ball is a linear combination of spherical harmonics (the base cases of degrees 0 and 1
being trivial).

Exercise 1.3.21 is a naive, computational way to see that every homogeneous polynomial
equals a harmonic homogeneous polynomial plus |z|2 times a polynomial of lower degree.
For a slick—but less intuitive—way to see this property, consult the book of Stein and
Weiss [36, Chapter IV, §2] or the book of Rudin [32, §12.1].

Further results and questions

When Ω is a general bounded domain, it is a priori conceivable either that the iterates M j

on L2(bΩ, dSurfaceArea) fail to converge or that the iterates converge to a non-orthogonal
projection. As far as I know, this general situation remains to be worked out.
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1.3 The Bochner–Martinelli kernel

Open problem 1.3.22. If the iterates M j of the Bochner–Martinelli operator converge
in the strong operator topology to the Szegő projection in L2(bΩ, dSurfaceArea), is Ω nec-
essarily a ball?

A uniqueness theorem of E. Ligocka [25] suggests to me that the answer to the preceding
question should be affirmative.

One can also consider iterates of the Bochner–Martinelli operator in other function
spaces. In his Seoul lecture notes [20, p. 20], Kytmanov posed the following problem,
which as far as I know is still open.

Open problem 1.3.23. When 1 < p <∞, do the iterates M j of the Bochner–Martinelli
operator for the ball converge in the strong operator topology to the Szegő projection in
Lp(bΩ, dSurfaceArea)?

One can also consider the Bochner–Martinelli operator M as acting on functions on
the interior: namely, restrict the function to the boundary (assuming that this restriction
makes sense) and integrate against the Bochner–Martinelli kernel on the boundary to get
a new function on the interior. When k is a positive integer, let W k(B) denote the Sobolev
space consisting of functions whose derivatives through order k are square-integrable on B.
The inner product in W k(B) can be taken to be the sum of the inner products in L2(B)
of the derivatives.

Exercise 1.3.24. Prove that harmonic homogeneous polynomials of different bidegrees
are orthogonal in W k(B).

It can be shown that functions in W k(B) have boundary values (“traces”) in L2(bB)

(actually the traces belong to the subspaceW k− 1
2 (bB)), and the map that takes a function f

to the Poisson integral of its boundary values is continuous in W k(B). Consequently, to
study the Bochner–Martinelli operator in W k(B), it suffices to consider the action of M
on harmonic functions. Proposition 1.3.17 implies that the iterates M j converge in the
strong operator topology of W k(B) to a projection operator onto the subspace of W k(B)
consisting of holomorphic functions.

Open problem 1.3.25. For which domains Ω (other than balls) is it true that for every
positive integer k the iterates of the Bochner–Martinelli operator converge in W k(Ω) to a
projection operator onto the holomorphic subspace of W k(Ω)?

A. V. Romanov [31] obtained the following partial result.

Theorem 1.3.26. Suppose n ≥ 2. Let Ω be a bounded domain in Cn with connected
boundary of class C∞. The iterates of the Bochner–Martinelli operator converge in the
strong operator topology of W 1(Ω) to a projection onto the subspace of W 1(Ω) consisting
of holomorphic functions.
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1.3 The Bochner–Martinelli kernel

Emil J. Straube observed that there is a necessary condition for a domain to satisfy the
property indicated in Problem 1.3.25, and there are known domains that fail to satisfy
that necessary condition. Namely, the property indicated in Problem 1.3.25 implies that
there is a projection operator onto holomorphic functions that is continuous in W k(Ω) for
every positive integer k. It follows that the holomorphic subspace of W k(Ω) is dense in the
holomorphic subspace of W 1(Ω) for every positive integer k. Barrett and Fornæss [4] have
given an example of a (non-pseudoconvex) Hartogs domain in C2 with smooth boundary for
which (in particular) the holomorphic subspace of W 5(Ω) is not dense in the holomorphic
subspace of W 1(Ω), even in the topology of uniform convergence on compact subsets of Ω.

1.3.7 CR functions and extension from the boundary

Section 1.3.4 shows that if Ω is a bounded domain in Cn, where n ≥ 2, and if the boundary
of Ω is connected, then every function holomorphic in a connected neighborhood of the
boundary bΩ extends holomorphically to all of Ω. It is natural to ask if an extension
phenomenon still exists in the limit as the thickness of the neighborhood of the boundary
goes to 0.

There is a technical problem in trying to formulate such a theorem, since holomorphic
functions live on open sets. One needs a property of functions living on the boundary bΩ
that characterizes boundary values of holomorphic functions.

In complex space C of dimension 1, there is no local differential condition that describes
a linear space of restrictions of holomorphic functions to a curve. Indeed, consider the
following observations about classes of functions defined on an open segment S of the real
axis. (a) Every real-analytic function on S is the restriction to S of a function holomorphic
in an open neighborhood of S. (b) By the Schwarz reflection principle, a real-valued
continuous function on S is the continuous boundary value of a holomorphic function on
one side of S if and only if the boundary function is real-analytic. (c) Every complex-
valued, Hölder-continuous function on S can be expressed as the difference of boundary
values on S of a holomorphic function in the upper half-plane and a holomorphic function
in the lower half-plane. The latter fact follows from the Plemelj jump formula for the
Cauchy integral (also known as the Sokhotskĭı formula), for which see [26, vol. I, §74], for
example.

In complex space of higher dimension, however, the trace of a holomorphic function on a
hypersurface must satisfy the Cauchy–Riemann equations in tangential complex directions.
That observation motivates the definition of CR functions.

Theorem/Definition 1.3.27. Suppose n ≥ 2. Let Ω be a bounded domain in Cn with
class C1 boundary. A continuous function f on the boundary bΩ is called a CR function
on bΩ if the following property holds.
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1.3 The Bochner–Martinelli kernel

1. For every differential form ϕ of type (n, n− 2) and class C1(Cn), the integral∫
bΩ

f ∂ϕ = 0. (1.28)

If f is a class C1 function on bΩ (in other words, there is a function F of class C1(Cn) such
that F

∣∣
bΩ

= f), and if ρ is a class C1 defining function for Ω, then each of the following
properties is equivalent to property 1.

2. For every extension F of f , and for all integers j and k between 1 and n, the expression

∂F

∂zj

∂ρ

∂zk
− ∂F

∂zk

∂ρ

∂zj

is equal to 0 at every point of bΩ.

3. For every extension F of f , the differential form ∂F ∧ ∂ρ is equal to 0 at every point
of bΩ.

4. For every extension F of f , for every point w in bΩ, and for all complex numbers t1,
. . . , tn such that

∑n
j=1 tj(∂ρ/∂zj)(w) = 0, the expression

n∑
j=1

tj
∂F

∂zj
(w) is equal to 0.

The properties in the preceding definition are local (in equation (1.28), one can restrict
attention to forms ϕ with support in a small open set), so there is a corresponding concept
of a function being a CR function on an open portion of bΩ.

Proof of the equivalence. For every extension F of f , degree considerations imply that

0 =

∫
bΩ

d(F ϕ) =

∫
bΩ

∂(F ϕ) =

∫
bΩ

∂F ∧ ϕ+

∫
bΩ

F ∂ϕ.

Therefore property 1 is equivalent to the statement that
∫
bΩ
∂F ∧ ϕ = 0. Fix indices j

and k, assume without loss of generality that j < k, and choose ϕ of the form ψ dz[j, k]∧dz,
where ψ is an arbitrary function of class C1(Cn). Then

∂F ∧ ϕ = ψ(z)

(
(−1)j−1 ∂F

∂zj
dz[k] ∧ dz + (−1)k−2 ∂F

∂zk
dz[j] ∧ dz

)
.
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In view of Exercise 1.2.2, property 1 implies that∫
bΩ

ψ(z)(−1)j+k|∇ρ(z)|−1

(
∂F

∂zj

∂ρ

∂zk
− ∂F

∂zk

∂ρ

∂zj

)
dSurfaceArea = 0.

Since ψ is arbitrary, it follows that property 1 implies property 2. On the other hand, an
arbitrary ϕ is a sum of differential forms of the kind just considered, so the same argument
shows that property 2 implies property 1.

The equivalence of properties 2 and 3 is a direct calculation:

∂F ∧ ∂ρ =
∑
j<k

(
∂F

∂zj

∂ρ

∂zk
− ∂F

∂zk

∂ρ

∂zj

)
dzj ∧ dzk.

The definition of class C1 boundary entails that ∇ρ 6= 0 on bΩ. Consequently, for each
point w in bΩ there is some index k for which (∂ρ/∂zk)(w) 6= 0. Then the expressions

∂ρ

∂zk
(w)

∂

∂zj
− ∂ρ

∂zj
(w)

∂

∂zk
(where j ∈ {1, . . . , k − 1, k + 1, . . . , n}),

which represent tangent vectors at w, form a basis for the (n − 1)-dimensional space
of vectors

∑n
j=1 tj(∂/∂zj) with the property that

∑n
j=1 tj(∂ρ/∂zj)(w) = 0. Therefore

properties 2 and 4 are equivalent.

Remark 1.3.28. The proof reveals that in properties 2–4 of Theorem/Definition 1.3.27,
one can equivalently replace the words “for every extension” by the words “for one ex-
tension”. Moreover, the proof is unchanged if the condition that F is in class C1(Cn) is
replaced by the following weaker condition:

F is continuous on Cn, the restriction F
∣∣
bΩ

equals f , the first partial deriva-
tives of F exist on bΩ, and the first partial derivatives of F are continuous
on bΩ.

(1.29)

That weaker condition on the extension will come into play in a moment.

Theorem/Definition 1.3.27 characterizes CR-functions by saying that for an arbitrary
extension F , the differential form ∂F has only a “complex normal component” at the
boundary. By choosing a special extension F , one can eliminate this normal component.

Proposition 1.3.29. Suppose n ≥ 2. Let Ω be a bounded domain in Cn with class C1

boundary. A class C1 function f on bΩ is a CR function if and only if there exists an
extension F satisfying (1.29) such that ∂F = 0 at each point of bΩ.
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1.3 The Bochner–Martinelli kernel

Proof. If such an extension F exists, then f is a CR function by property 3 of Theo-
rem/Definition 1.3.27 (in view of Remark 1.3.28). The new content of the proposition is
the converse direction.

Let ρ be a class C1 defining function for Ω, and let F1 be an arbitrary extension of f to
a function of class C1(Cn). The idea is to correct F1 by subtracting a suitable term that
vanishes at the boundary bΩ and that cancels out the component of ∂ρ in ∂F1. It suffices
to prescribe F in a neighborhood of bΩ where ∇ρ 6= 0. Define F in such a neighborhood
as follows:

F (z) = F1(z)− 4ρ(z)

|∇ρ(z)|2
n∑
j=1

∂ρ

∂zj

∂F1

∂zj
. (1.30)

Evidently F
∣∣
bΩ

= F1

∣∣
bΩ

. Moreover, the dzk component of ∂F at a point of bΩ equals

∂F1

∂zk
−

(
4

|∇ρ|2
n∑
j=1

∂ρ

∂zj

∂F1

∂zj

)
∂ρ

∂zk
.

By property 2 of Theorem/Definition 1.3.27, the preceding expression equals

∂F1

∂zk
−

(
4

|∇ρ|2
n∑
j=1

∂ρ

∂zj

∂ρ

∂zj

)
∂F1

∂zk
,

which reduces to 0. Thus F has the required properties.

Exercise 1.3.30 (suggested by Tao Mei). Show that when n = 1, the conclusion of
Proposition 1.3.29 holds for every function f of class C1 on bΩ (the condition that f is a
CR function being vacuous when n = 1).

This preparation leads to the following boundary version of the extension phenomenon of
Hartogs. For several decades, starting around 1965, the result was known in the literature
as “Bochner’s theorem” or as the “Hartogs–Bochner extension theorem”, but Range has
documented that this attribution is mistaken [28].

Theorem 1.3.31. Suppose n ≥ 2. Let Ω be a bounded domain in Cn with connected
boundary of class C1. If f is a continuous CR function on bΩ, then there exists a (unique)
function F , continuous on the closure of Ω, such that F is holomorphic in Ω and F

∣∣
bΩ

= f .
If f is class C1 on bΩ, then F is class C1 on the closure of Ω.

Proof. It is easy to see that F is unique, for the difference of two such functions is a
holomorphic function in Ω that is identically equal to 0 on the boundary. By the maximum
principle, the difference is identically equal to 0 in Ω.
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1.3 The Bochner–Martinelli kernel

As in the proof of Theorem 1.3.7, there is a natural way to define a candidate for F via
the Bochner–Martinelli integral: namely

F (z) :=

∫
bΩ

f(w)U(w, z), z /∈ bΩ.

Three properties need to be verified: first, that F is holomorphic in Ω; second, that F is a
continuous extension of f ; and third, that F is class C1 on the closure of Ω if f is class C1

on bΩ.
According to Lemma 1.3.8, there is a differential form Vk(w, z) of type (n, n − 2) in w,

smooth for w 6= z, such that

∂F

∂zk
=

∫
bΩ

f(w) ∂wVk(w, z).

Since f is a CR function, the integral on the right-hand side is equal to 0 by property 1 of
Theorem/Definition 1.3.27. Thus F is holomorphic both inside Ω and outside the closure
of Ω. Since n ≥ 2, the same argument as in section 1.3.3 shows that F is identically equal
to 0 on the complement of the closure of Ω. (This step uses that bΩ is connected and
class C1, so the complement of the closure of Ω is connected.)

In particular, F has a limit on bΩ from the outside, and this limit is identically equal
to 0. The main part of the proof consists in showing that F has a limit at bΩ from the
inside and that this limit is equal to f . Since f is uniformly continuous on bΩ, it suffices
to prove that a limit from the inside is taken along each normal line, uniformly along the
boundary.

Fix a positive ε. The goal is to specify a small positive number δ and a positive number C
such that if z is any point in bΩ, and ν is the inner unit normal to the boundary at z,
then |F (z + tν)− f(z)| < Cε when 0 < t < δ. (To start with, one should choose δ at least
small enough to guarantee that the point z + tν does lie inside Ω when 0 < t < δ.) The
Bochner–Martinelli integral reproduces constant functions, so

F (z + tν)− f(z) =

∫
bΩ

(f(w)− f(z))U(w, z + tν).

As observed above, the Bochner–Martinelli integral of a CR function is identically equal
to 0 outside the closure of Ω, so for small positive t the preceding equation is equivalent to
the following equation:

F (z + tν)− f(z) =

∫
bΩ

(f(w)− f(z)) (U(w, z + tν)− U(w, z − tν)).

Since f is uniformly continuous on bΩ, there is a positive number γ, independent of z
and w, such that |f(w)− f(z)| < ε when w is in bΩ∩B(z, γ). Additionally choose γ small
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1.3 The Bochner–Martinelli kernel

enough that the part of bΩ in B(z, γ) is a graph over the tangent plane at z, and the scalar
product of (w − z) with ν has magnitude no greater than 1

2
|w − z| for w in B(z, γ). Split

the preceding integral into the part over bΩ \B(z, γ) and the part over bΩ ∩B(z, γ). The
first integral evidently tends to 0 with t (uniformly with respect to z) because the integral
does not see the singularity of the Bochner–Martinelli kernel. Indeed, that integral has
absolute value bounded by t times a quantity that depends only on γ, the dimension n,
the maximum of |f |, and the total surface area of bΩ. Having fixed γ, choose δ such that
this first integral is less than ε when 0 < t < δ. The second integral has absolute value
bounded by a constant times ε times

n∑
j=1

∫
bΩ∩B(z,γ)

∣∣∣∣ (w − z − tν)j
|w − z − tν|2n

− (w − z + tν)j
|w − z + tν|2n

∣∣∣∣ dSurfaceArea. (1.31)

To complete the proof, it suffices to show that the terms in the preceding sum are bounded
independently of z and t.

The choice of γ implies that |w − z ± tν|2 ≥ 1
2
(|w − z|2 + t2) when w ∈ bΩ ∩ B(z, γ).

Therefore ∣∣∣∣ (−tν)j
|w − z − tν|2n

− (tν)j
|w − z + tν|2n

∣∣∣∣ ≤ 2n+1 t

(|w − z|2 + t2)n
.

Moreover, | |w − z − tν|2 − |w − z + tν|2 | ≤ 4t|w − z| for all w and z, so∣∣∣∣ 1

|w − z − tν|2
− 1

|w − z + tν|2

∣∣∣∣ ≤ 16t|w − z|
(|w − z|2 + t2)2

.

Since |An −Bn| ≤ n|A−B|max(|A|n−1, |B|n−1), it follows that∣∣∣∣ (w − z)j
|w − z − tν|2n

− (w − z)j
|w − z + tν|2n

∣∣∣∣ ≤ 16n2n−1t|w − z|2

(|w − z|2 + t2)n+1
≤ 2n+3n

t

(|w − z|2 + t2)n
.

Consequently, each integrand in (1.31) is bounded by a constant (depending only on the
dimension n) times t/(|w− z|2 + t2)n. Parametrizing the integral by using the coordinates
in the tangent plane as parameters shows that the integral is bounded (independently of z)
by a constant times ∫

|x|<γ

t

(|x|2 + t2)n
dVolumex,

where the parameter x lies in R2n−1. Replacing the variable x by tu shows that the latter
integral is bounded above by ∫

R2n−1

1

(|u|2 + 1)n
dVolumeu,
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independently of both t and γ. Integrating in spherical coordinates shows that this integral
converges. This estimate completes the proof that F is continuous on the closure of Ω,
and F

∣∣
bΩ

= f .
It remains to show that F is class C1 on the closure of Ω when f is class C1 on bΩ. The

key point is that each derivative ∂/∂zj essentially commutes with the Bochner–Martinelli
integral of a CR function.

Proposition 1.3.29 provides a special extension g of f with the property that ∂g = 0
on bΩ. Now

∂F

∂zj
=

∫
bΩ

g(w)
∂

∂zj
U(w, z) = −

∫
bΩ

g(w)
∂

∂wj
U(w, z), (1.32)

since the Bochner–Martinelli kernel depends only on the difference w − z. Introduce the
ad hoc notation Uj(w, z) for the (n − 1, n − 1) form such that U(w, z) = dwj ∧ Uj(w, z).
Then ∂

∂wj
U(w, z) = ∂wUj(w, z). Since U(w, z) is ∂w-closed, so is Uj(w, z), and therefore

∂
∂wj

U(w, z) = dwUj(w, z). Now rewrite equation (1.32) as follows:

∂F

∂zj
= −

∫
bΩ

g(w) dwUj(w, z) =

∫
bΩ

dg(w) ∧ Uj(w, z).

Since ∂g = 0 on bΩ, one has that

∂F

∂zj
=

∫
bΩ

∂g(w) ∧ Uj(w, z) =

∫
bΩ

∂g

∂wj
dwj ∧ Uj(w, z) =

∫
bΩ

∂g

∂wj
U(w, z).

Thus the function ∂F/∂zj is the Bochner–Martinelli integral of the continuous CR function
∂g/∂wj.

Exercise 1.3.32. Explain why ∂g/∂wj is a CR function on bΩ.

By what was shown above, the function ∂F/∂zj is a continuous extension of ∂g/∂wj to Ω.
Moreover, the derivative ∂F/∂zj is identically equal to 0, since F is holomorphic in Ω.
Since the index j is arbitrary, every first-order partial derivative of F has a continuous
extension to the closure of Ω. Thus the function F is class C1 on the closure of Ω.

Exercise 1.3.33. Show that if in Theorem 1.3.31 the boundary of Ω is class Ck (where
k ≥ 2) and the function f is class Ck on bΩ, then the extension F is class Ck on the closure
of Ω.

The hypothesis in Theorem 1.3.31 of connectedness of the boundary is essential. Con-
sider, for example, a domain bounded by two concentric spheres. A function that is equal
to different constants on the two boundary components is a CR function that does not
extend to a holomorphic function on the domain.
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By strengthening the hypotheses, however, one can obtain a version of Theorem 1.3.31
that does apply to domains with (possibly) disconnected boundary. The following result
is due to Barnet M. Weinstock [37] (under more restrictive differentiability hypotheses).

Exercise 1.3.34. Suppose n ≥ 2. Let Ω be a bounded domain in Cn with (not necessarily
connected) boundary of class C1. If f is a continuous function on bΩ with the property
that ∫

bΩ

f ω = 0

for every differential form ω of type (n, n − 1) with coefficients in class C1 on the closure
of Ω such that ∂ω = 0 on Ω, then there exists a (unique) function F , continuous on the
closure of Ω, such that F is holomorphic in Ω and F

∣∣
bΩ

= f .

Another situation to which the statement of Theorem 1.3.31 fails to apply is the case
when the dimension n is equal to 1 (for then the concept of CR function is vacuous). The
following exercise gives a substitute for the theorem when n = 1.

Exercise 1.3.35. Prove that if Ω is a bounded domain in the plane C with connected
boundary bΩ of class C1, and if f is a continuous function on bΩ such that∫

bΩ

f(z)zk dz = 0 when k ≥ 0,

then there exists a (unique) function F , continuous on the closure of Ω, such that F is
holomorphic in Ω and F

∣∣
bΩ

= f . If f is class C1 on bΩ, then F is class C1 on the closure
of Ω.

Further results

The preceding results about extension of CR functions assume that the domain is bounded.
The one place where that assumption is used in a crucial way is to guarantee that when
|z| → ∞, the Bochner–Martinelli kernel U(w, z) tends to 0 uniformly with respect to w
in bΩ. That deduction breaks down if bΩ is unbounded, and the theorems break down too.

Example 1.3.36. Let Γ denote the flat hypersurface on which Re z1 = 0. Every continuous
function f depending only on Im z1 is a CR function on Γ. If f is the continuous boundary
value of a function that is holomorphic on one side of Γ, then f has to be real-analytic
because of the Schwarz reflection principle. But there exist functions of class C∞ that are
not real analytic. Consequently, CR functions on a flat hypersurface do not necessarily
extend holomorphically to either side of the hypersurface.
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Nonetheless, there are cases in which CR functions do extend from the boundary of
an unbounded domain into the domain. The model example is the so-called Siegel upper
half-space in Cn consisting of points (z1, . . . , zn) such that Im z1 > |z2|2 + · · · + |zn|2.
This unbounded domain is biholomorphically equivalent to the unit ball (via the Cayley
transform), and CR functions on the boundary of the Siegel upper half-space do extend to
be holomorphic functions inside the domain.

Evidently one needs some sort of (pseudo)convexity hypothesis in the case of an un-
bounded domain. The following theorem is a version of a result of M. Naser Šafii [33].
The differentiability hypotheses in the statement can be weakened, but a little extra differ-
entiability reduces the technical prerequisites for the proof. (The original statement and
proof are phrased in the language of currents.)

Theorem 1.3.37. Suppose n ≥ 2. Let Ω be a domain in Cn, possibly unbounded, with
connected boundary of class C4. Suppose additionally that the envelope of holomorphy of
Cn \ closure(Ω) equals Cn; in other words, every holomorphic function on the complement
of the closure of Ω extends holomorphically to Cn. Then for every CR function f on bΩ
of class C4, there exists a (unique) function F , continuous on the closure of Ω, such that
F is holomorphic in Ω and F

∣∣
bΩ

= f .

Proof. The idea in the proof is similar to the strategy in the proof of Theorem 1.3.7
about extending holomorphic functions across compact holes. First extend the function f
arbitrarily, and then solve a ∂-problem to correct the extension to ensure holomorphicity.
The main complication is that in the new setting, the theorem about solving the ∂-problem
with compact support is not directly applicable. To handle this complication, one needs the
extra hypothesis about the envelope of holomorphy together with the following standard
result (whose proof is deferred until a later section).

Lemma 1.3.38. If G is a ∂-closed (0, 1)-form of class C1 on the whole space Cn, then
there exists a function u of class C1 on Cn such that ∂u = G.

Also needed in the proof is the following refinement of Proposition 1.3.29. It is here that
the extra differentiability is convenient.

Lemma 1.3.39. Let Ω be a domain in Cn, possibly unbounded, with boundary defining
function ρ of class C4. If f is a CR function on bΩ of class C4, then there exist a
function F on Cn of class C2 such that F

∣∣
bΩ

= f and a (0, 1)-form h on Cn of class C1

such that ∂F = ρ2h.

Proof. Although stated globally, the lemma is essentially local. If one can find the required
functions F and h in a neighborhood of a point of bΩ, then one can patch with a partition
of unity to obtain global functions.
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The proof of Proposition 1.3.29 (in particular, equation (1.30)) provides a function g1 of
class C3 such that g1

∣∣
bΩ

= f and ∂g1

∣∣
bΩ

= 0. What is needed now is a further correction to

make ∂ of the extension vanish at bΩ to order ρ2.
From (1.30), one sees that there is a (0, 1)-form θ1 of class C2 such that ∂g1 = ρθ1. Since

∂(∂g1) = 0, one has that θ1 ∧ ∂ρ = 0 on bΩ. Therefore there are a function g2 of class C2

and a (0, 1)-form θ2 of class C1 such that θ1 = g2 ∂ρ + ρθ2. If F := g1 − 1
2
g2ρ

2, then F is
an extension of f of class C2 such that

∂F = ∂g1 − g2ρ ∂ρ− 1
2
ρ2 ∂g2 = ρ2(θ2 − 1

2
∂g2).

Set h equal to θ2 − 1
2
∂g2 to obtain the statement of the lemma.

Exercise 1.3.40. Suppose that bΩ and f have a higher degree of differentiability. Can
you construct an extension F of f such that ∂F = O(ρ3)?

The function F constructed in the proof of Lemma 1.3.39 is not the F required in the
conclusion of the theorem, so rename the function coming from the lemma as φ. The
desired F will be a further correction of φ. Define a (0, 1)-form G in Cn by setting G equal
to ∂φ in Ω and 0 in the complement of Ω. Since ∂φ = O(ρ2), the (0, 1)-form G is a ∂-closed
form in Cn of class C1.

According to Lemma 1.3.38, there is a function u of class C1 on Cn such that ∂u = G.
Since G = 0 in the complement of Ω, the function u is a holomorphic function on the
complement of the closure of Ω. The hypothesis about the envelope of holomorphy implies
that there is a holomorphic function v in all of Cn such that v and u are equal on the
complement of the closure of Ω. Since both u and v are continuous on Cn, the two
functions agree on bΩ.

Define F in Ω such that F = φ − u + v. By construction, ∂F = ∂φ − ∂u = 0 in Ω, so
F is a holomorphic function in Ω. Moreover, (−u + v)

∣∣
bΩ

= 0, so F
∣∣
bΩ

= φ
∣∣
bΩ

= f . Thus
F is the required holomorphic extension of f into Ω.

1.4 Local extension of CR functions

In the extension theorem of Hartogs in section 1.3.4 and in the global extension results for
CR functions in section 1.3.7, the geometry of the boundary plays no role (except implicitly
in Theorem 1.3.37). Under a suitable hypothesis on the Levi form, there is a local extension
phenomenon: holomorphic functions inside a domain extend across pseudoconcave parts
of the boundary. It is reasonable to expect that CR functions on the boundary should
extend analogously.
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1.4 Local extension of CR functions

In the local context, one can dispense with the domain and consider a CR function on
a small piece of a hypersurface. If the Levi form of a particular defining function has
a negative eigenvalue, then the CR function extends holomorphically to one side of the
hypersurface, and if the Levi form has a positive eigenvalue, then the CR function extends
to the other side of the hypersurface. (If all the eigenvalues of the Levi form are equal to 0,
then there need not exist an extension to either side. For example, on the hypersurface
where Re z1 = 0, every real-valued, continuous function f of Im z1 is a CR function; but if
f is the continuous boundary value of a holomorphic function, then f has to be real-analytic
because of the Schwarz reflection principle.)

To formulate a precise statement, suppose that ρ is a class C4 function in a neighbor-
hood U of the origin in Cn such that ρ(0) = 0 and ∇ρ 6= 0 in U . (The natural differentia-
bility hypothesis on ρ is class C2, but to avoid technical complications it is convenient to
assume a little extra differentiability, as in Theorem 1.3.37.) Let Γ denote the hypersurface
{ z ∈ U : ρ(z) = 0 }. To say that a vector

∑n
j=1 tj(∂/∂zj) is tangent to Γ at 0 means that∑n

j=1 tj(∂ρ/∂zj)(0) = 0. The Levi form at the origin is the quadratic form acting on such
tangent vectors as follows:

n∑
j=1

n∑
k=1

∂2ρ

∂zj∂zk
(0)tjtk, where

n∑
j=1

tj
∂ρ

∂zj
(0) = 0.

Theorem 1.4.1. Suppose n ≥ 2. If, in the situation just described, the Levi form of ρ
has a negative eigenvalue at the origin, then there is a neighborhood V of the origin such
that for every CR function f of class C4 on Γ there exists a continuous function F on
{ z ∈ V : ρ(z) ≥ 0 } such that F

∣∣
Γ
= f and F is holomorphic on { z ∈ V : ρ(z) > 0 }.

Similarly, if the Levi form has a positive eigenvalue, then f extends holomorphically to the
side of Γ where ρ < 0.

Exercise 1.4.2. In the setting of the preceding theorem, show that if the Levi form has
both a positive eigenvalue and a negative eigenvalue at the origin (which can happen only
when n ≥ 3), then there is a holomorphic function F in some neighborhood of the origin
such that F

∣∣
Γ
= f . (The preceding theorem provides a continuous function F that is

holomorphic on each side of Γ, so what needs to be checked is that F is holomorphic at
points of Γ.)

Proof of Theorem 1.4.1. The strategy is similar to the proof of Theorem 1.3.37, except
that one needs a local theorem about solving the ∂-problem while keeping the support on
one side of a hypersurface. The proof follows the exposition of Hörmander [10, proof of
Theorem 2.6.13]. For a different proof that uses the approximation theorem of Baouendi
and Treves [3] and the technique of analytic discs, see the book of Boggess [5, sections
15.1–15.2].
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1.4 Local extension of CR functions

It suffices to consider the case when the Levi form has a negative eigenvalue. (Change
the sign of the defining function ρ if necessary.) It is convenient to normalize the defining
function ρ by making holomorphic coordinate changes in the following way.

Since the hypersurface Γ is locally a graph over its tangent plane, one can choose local
coordinates (z1, . . . , zn) in which Γ is the set where Im zn = α(z1, . . . , zn−1,Re zn)+O(|z|3),
where α is a quadratic form in Re z1, . . . , Re zn−1, Im z1, . . . , Im zn−1, and Re zn with real
coefficients. By making a local biholomorphic change of coordinates, one can eliminate
the dependence of α on Re zn (making a corresponding change in the form of the O(|z|3)
remainder term). Indeed, if the Re zn terms in α have the form (Re zn)(Re

∑n
j=1 βjzj),

where the βj are complex constants, then the change of variables z′j = zj when 1 ≤ j ≤ n−1
and z′n = zn−izn

∑n
j=1 βjzj (which is biholomorphic in a neighborhood of the origin because

the Jacobian matrix at the origin is the identity matrix) eliminates those terms. Notice
that terms of the form (Im zn)(Im

∑n
j=1 βjzj) can be included in the O(|z|3) remainder

term because Im zn = O(|z|2) on Γ.
Consequently, one may assume that the quadratic form α is represented as the sum

Re
∑n−1

j=1

∑n−1
k=1 bjkzjzk +

∑n−1
j=1

∑n−1
k=1 cjkzjzk, where (cjk) is a Hermitian-symmetric ma-

trix. The biholomorphic change of variables z′j = zj when 1 ≤ j ≤ n − 1 and z′n =

zn − i
∑n−1

j=1

∑n−1
k=1 bjkzjzk reduces α to the form

∑n−1
j=1

∑n−1
k=1 cjkzjzk. Now a unitary trans-

formation in the first n− 1 variables reduces α to the form
∑n−1

j=1 aj|zj|2, where the aj are
real numbers. In these new coordinates, the defining function ρ(z1, . . . , zn) may be taken
to be Im zn −

∑n−1
j=1 aj|zj|2 + O(|z|3). The hypothesis that the Levi form has a negative

eigenvalue means that (at least) one of the numbers aj is positive. Suppose, without loss
of generality, that a1 > 0.

Lemma 1.3.39 provides an extension φ of the CR function f to a neighborhood of the
origin such that φ is class C2 and ∂φ = O(ρ2). Choose a small positive number δ such that
the polydisc of radius δ lies inside the neighborhood of the origin where φ is defined. In
view of the continuity of ρ and the continuity of the second derivatives of ρ, the following
two properties can be achieved by shrinking δ. First, whenever the point (z1, . . . , zn)
lies in the polydisc centered at the origin of radius δ, the function z1 7→ ρ(z1, . . . , zn)
is strictly superharmonic. Second, ρ(z1, 0, . . . , 0) < 0 when 0 < |z1| ≤ δ. Fix δ, and
choose (again using the continuity of ρ) a smaller positive number ε such that (a) when
|z1| = δ and max(|z2|, . . . , |zn|) ≤ ε, the value ρ(z1, . . . , zn) < 0; and (b) when |z1| ≤ δ and
max(|z2|, . . . , |zn−1|) ≤ ε, the value ρ(z1, z2, . . . , zn−1,−iε) < 0.

The proof is carried out on the closed polydisc of polyradius (δ, ε, . . . , ε). The two
main consequences of the choices of δ and ε are the following. First, the intersection of
the polydisc with the set where ρ < 0 is a connected set. Indeed, this set contains (by
construction) the points where |z1| = δ, so it suffices to show, for fixed values of z2, . . . ,
and zn, that the set { z1 : |z1| ≤ δ and ρ(z1, . . . , zn) < 0 } is a connected subset of the
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1.4 Local extension of CR functions

closed disc of radius δ. If this set had a component that did not intersect the boundary
of the disc of radius δ, then the continuous function ρ would equal 0 on the boundary of
the component. Consequently, ρ would attain a (negative) minimum in the interior of the
component, contradicting that ρ is (by construction) superharmonic as a function of z1.
Second, there is a nonvoid open set in the space of variables z2, . . . , zn whose Cartesian
product with { z1 ∈ C : |z1| ≤ δ } is contained in the intersection of the polydisc with the
set where ρ < 0. This follows from item (b) in the construction in the preceding paragraph
(by the continuity of ρ).

In a neighborhood of the closed polydisc with polyradius (δ, ε, . . . , ε), define a (0, 1)-
form G such that G = ∂φ when ρ ≥ 0 and G = 0 when ρ ≤ 0. Then G is a ∂-closed
form of class C1 because ∂φ = O(ρ2). Since G(z1, . . . , zn) = 0 in a neighborhood of the
set where |z1| = δ, one can extend G to be identically 0 on the set where |z1| > δ and
max(|z2|, . . . , |zn|) ≤ ε, and the extension is still class C1. The goal now is to find a func-
tion u such that ∂u = G in the polydisc centered at the origin with polyradius (δ, ε, . . . , ε),
and u

∣∣
Γ
= 0. The idea is to apply the Cauchy formula (1.1) in the first coordinate.

LetGj(w) denote the dwj component of the (0, 1)-formG(w), and define u in the polydisc
as follows:

u(z1, . . . , zn) := − 1

π

∫
|w1|<δ

or w1∈C

G1(w1, z2, . . . , zn)

w1 − z1

dAreaw1 .

The same change-of-variables argument as in the proof of Theorem 1.3.6 shows that

∂u

∂z1

= − 1

π

∫
C

(∂G1/∂w1)(w1, z2, . . . , zn)

w1 − z1

dAreaw1 .

The one-dimensional Cauchy integral formula (1.1) now implies that ∂u/∂z1 = G1. More-
over, differentiating under the integral sign and using that G is ∂-closed implies for k dif-
ferent from 1 that

∂u

∂zk
= − 1

π

∫
C

∂G1/∂zk
w1 − z1

dAreaw1 = − 1

π

∫
C

∂Gk/∂w1

w1 − z1

dAreaw1 .

Again invoking (1.1) shows that ∂u/∂zk = Gk. Thus ∂u = G as claimed.
In particular, u is a holomorphic function in intersection of the polydisc with the set

where ρ < 0. As observed above, this part of the polydisc is a connected set; moreover,
this part of the polydisc contains an open subset that is fibered by discs of radius δ in the
first coordinate direction. The function u is identically equal to zero on this open subset
(because G(w1, z2, . . . , zn) = 0 on the whole disc where |w1| < δ). By the identity theorem
for holomorphic functions, the function u is identically equal to zero on the intersection of
the polydisc with the set where ρ < 0. By continuity, the function u = 0 on Γ.
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1.5 The Cauchy–Fantappiè integral representation

If F := φ − u, then F is class C1, and F
∣∣
Γ
= φ

∣∣
Γ
= f . On the set where ρ > 0, one has

that ∂F = ∂φ − ∂u = 0. Thus F is the required local holomorphic extension of f to the
side of Γ where ρ > 0.

1.5 The Cauchy–Fantappiè integral representation

The Bochner–Martinelli integral belongs to a family of integral representations that the
famous French mathematician Jean Leray (born 7 November 1906, died 10 November
1998) dubbed “Cauchy–Fantappiè integrals” after the work of the Italian mathematician
Luigi Fantappiè (born 15 September 1901, died 28 July 1956). The first instance of the
terminology “Cauchy–Fantappiè” seems to be in Leray’s long memoir [24] from 1959, but
he published some of the ideas in two short notes [22] and [23] in 1956.

Although the Bochner–Martinelli integral has a universal kernel, the kernel of the Cauchy–
Fantappiè integral needs to be constructed specially for each domain. In favorable cases,
such as the case of convex domains to be considered later on, one can exhibit an ex-
plicit Cauchy–Fantappiè kernel that is holomorphic in the free variable. Consequently, the
elaborate formalism for integral representations more general than the Bochner–Martinelli
integral has a significant payoff.

A famous application of the Cauchy–Fantappiè formalism at the end of the 1960s was
the construction for strongly pseudoconvex domains of a nearly explicit integral represen-
tation formula that is holomorphic in the free variable. The construction was carried out
independently by E. Ramı́rez [27] (the published article is based on his dissertation at the
University of Göttingen) and by G. M. Henkin [9].

Definition 1.5.1. Let Ω be a bounded domain in Cn with class C1 boundary. Suppose
g : neighborhood(bΩ)×Ω→ Cn is a vector-valued function with the following two properties:
(a) for each fixed z in Ω, the function w 7→ g(w, z) is class C1; and (b) the scalar product

〈g(w, z), w − z〉 is nonzero when w is in bΩ and z is in Ω. (1.33)

The angle brackets indicate the usual scalar product on Cn: namely, 〈g(w, z), w − z〉 =∑n
k=1 gk(w, z)(wk−zk). (Be aware that in this context some authors use the angle brackets

to denote the corresponding sum without the conjugation in the second factor, since that
notation is consistent both with the action of a differential form on a vector field and with
the action of a linear functional on a function.) The Cauchy–Fantappiè kernel generated
by g is the differential form of bidegree (n, n− 1) given by the expression

cn

n∑
j=1

(−1)j−1gj(w, z)

〈g(w, z), w − z〉n
∂wg[j](w, z) ∧ dw, (1.34)
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1.5 The Cauchy–Fantappiè integral representation

where, as in Definition 1.3.1, the dimensional constant cn equals (−1)n(n−1)/2(n−1)!/(2πi)n,
the (0, n−1)-form ∂wg[j] equals ∂wg1∧· · ·∧∂wgj−1∧∂wgj+1∧· · ·∧∂wgn, and the (n, 0)-form
dw equals dw1 ∧ · · · ∧ dwn.

In (1.34), one could write dwg[j](w, z) instead of ∂wg[j](w, z) (for degree reasons, since
the kernel already contains dw1∧· · ·∧dwn). Notice that one obtains the Bochner–Martinelli
kernel (1.15) as a special case of (1.34) by taking g(w, z) equal to w − z.

It is not essential that the function g be defined for w in a neighborhood of bΩ; one
really needs g to be defined only on bΩ × Ω, for g can be extended in an arbitrary way
from bΩ to a neighborhood of bΩ (as a class C1 function). The restriction of (1.34) to bΩ is
independent of the extension of g, and since the plan is to integrate over bΩ, the ultimate
formula will be independent of the particular extension of g.

One often sees the definition of the Cauchy–Fantappiè kernel written not with (1.33) but
instead with the more restrictive condition that

〈g(w, z), w − z〉 = 1 for all w in bΩ and z in Ω. (1.35)

There is little loss of generality in imposing this extra restriction, for one can replace the
function g(w, z) by the function g(w, z)/〈g(w, z), w − z〉. The following exercise implies
that this rescaled function generates exactly the same Cauchy–Fantappiè kernel as the
kernel that g itself generates.

Exercise 1.5.2. Show that if λ is a class C1 function with no zeroes on bΩ, and G = λg,
then the Cauchy–Fantappiè kernel generated by G equals the Cauchy–Fantappiè kernel
generated by g.

Exercise 1.5.3. Let γ denote the (1, 0)-form
∑n

j=1 gj(w, z) dwj. Show that

1

(2πi)n
· γ ∧ (∂wγ)n−1

〈g(w, z), w − z〉n

is an equivalent expression for the Cauchy–Fantappiè kernel (1.34). In particular, if g
satisfies the condition (1.35), then the kernel (1.34) reduces to

1

(2πi)n
γ ∧ (∂wγ)n−1. (1.36)

Remark 1.5.4. Walter Koppelman [16] observed that one can use a determinant to rewrite
the expression (1.34) for the Cauchy–Fantappiè kernel. When condition (1.35) is in force,
the Cauchy–Fantappiè kernel can be expressed as follows:

1

(2πi)n
det

∣∣∣∣∣∣∣∣∣
g1 dw1 ∂g1 ∧ dw2 . . . ∂g1 ∧ dwn
g2 dw1 ∂g2 ∧ dw2 . . . ∂g2 ∧ dwn

...
...

. . .
...

gn dw1 ∂gn ∧ dw2 . . . ∂gn ∧ dwn

∣∣∣∣∣∣∣∣∣ . (1.37)
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1.5 The Cauchy–Fantappiè integral representation

Indeed, the definition of a determinant shows that (1.37) equals the following sum over
permutations σ of the n indices 1, . . . , n:

1

(2πi)n

∑
σ

sign(σ)gσ(1) dw1 ∧ ∂gσ(2) ∧ dw2 ∧ · · · ∧ ∂gσ(n) ∧ dwn,

where sign(σ) equals +1 if σ is a product of an even number of transpositions and −1 if
σ is a product of an odd number of transpositions. On the other hand, the differential
form (1.36) equals the sum

1

(2πi)n

∑
σ

gσ(1) dwσ(1) ∧ ∂gσ(2) ∧ dwσ(2) ∧ · · · ∧ ∂gσ(n) ∧ dwσ(n).

Reordering the differentials shows that the preceding two expressions are indeed equal.
The determinant (1.37) is slightly modified from Koppelman’s formulation in order to

suppress a technical complication. In considering determinants with entries from a non-
commutative ring, one has to be careful about the order of terms in the products that
arise. (For some discussion of determinants with differential forms as entries, see [35, §24.3,
pp. 208–210] and [2, pp. 5–7].) In the preceding determinant, one does not have to worry
about noncommutativity, for differential forms of degree 2 commute with differential forms
of arbitrary degree.

Theorem 1.5.5. If Ω is a bounded domain in Cn with class C1 boundary, then every con-
tinuous function f on the closure of Ω that is holomorphic in Ω is reproduced by integration
against any Cauchy–Fantappiè kernel (1.34): namely,

f(z) = cn

∫
bΩ

f(w)
n∑
j=1

(−1)j−1gj(w, z)

〈g(w, z), w − z〉n
∂wg[j](w, z) ∧ dw when z ∈ Ω. (1.38)

Notice that when n = 1, the equation (1.38) reduces to the usual one-dimensional Cauchy
integral formula.

Example 1.5.6. When Ω is the unit ball in Cn, one can choose a particularly simple
expression for g: namely, g(w, z) = w. If w is in the boundary of the unit ball, then∑n

j=1 gj(w, z)(wj − zj) = 1 − 〈z, w〉, and 1 − 〈z, w〉 6= 0 when z is inside the ball. Notice
that this choice of g is holomorphic in z simply because g is independent of z.

The corresponding Cauchy–Fantappiè kernel (1.34) then becomes

cn

n∑
j=1

(−1)j−1wj
(1− 〈z, w〉)n

dw[j] ∧ dw.
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1.5 The Cauchy–Fantappiè integral representation

In view of (1.21), the Cauchy–Fantappiè reproducing formula (1.38) for the ball can be
rewritten as follows:

f(z) =
(n− 1)!

2πn

∫
bΩ

f(w)

(1− 〈z, w〉)n
dSurfaceAreaw.

The kernel function in this integral is the Szegő kernel function for the unit ball in Cn. In
addition to being holomorphic in z, the Szegő kernel function is conjugate symmetric in the
variables z and w. (In fancier language, the integral operator corresponding to integration
against the Szegő kernel function is a self-adjoint operator on L2(bΩ, dSurfaceArea).)

Proof of Theorem 1.5.5. There are two somewhat different proofs of the theorem, both of
which are enlightening. The common theme of the two proofs is to relate the Cauchy–
Fantappiè integral to the Bochner–Martinelli integral, but one proof passes to the interior
while the other proof stays on the boundary.

In both proofs, there is no loss of generality in assuming that f is holomorphic in a
neighborhood of the closure of Ω: one can work on an increasing sequence of subdomains
that exhaust Ω (say sublevel sets of a defining function) and pass to the limit. Moreover,
it suffices to establish (1.38) for a specified z in Ω. If one understands that z is fixed from
now on, then one can simplify the notation by dropping the subscript w on the differential
operators d and ∂.

The first proof uses Exercise 1.5.3. Suppose that g(w, z) has been extended to Cn as a
class C1 function. By hypothesis, the set of points w for which

∑n
j=1 gj(w, z)(wj−zj) 6= 0 is

an open set containing bΩ. The initial claim is that on this open set, the Cauchy–Fantappiè
kernel (1.34) is a closed differential form. In verifying this claim, one can assume in view
of Exercise 1.5.2 that

∑n
j=1 gj(w, z)(wj − zj) = 1. Consequently, by Exercise 1.5.3, one

needs to check that d[γ ∧ (∂γ)n−1] = 0, where γ =
∑n

j=1 gj(w, z) dwj. For degree reasons,

it is equivalent to check that (∂γ)n = 0. Since ∂γ =
∑n

j=1 ∂gj ∧ dwj, one sees that

(∂γ)n = n! (∂g1 ∧ dw1) ∧ · · · ∧ (∂gn ∧ dwn). But the differentials ∂g1, . . . , ∂gn are linearly
dependent, since

∑n
j=1 gj(w, z)(wj − zj) = 1, so (∂γ)n = 0 as claimed.

The proof actually uses the closedness not of the Cauchy–Fantappiè form generated by g
but of the Cauchy–Fantappiè form generated by a function constructed from g as follows.
As indicated above, one may assume that

∑n
j=1 gj(w, z)(wj − zj) = 1 in a neighborhood

of bΩ. Let χ be a smooth cut-off function supported in this neighborhood such that
0 ≤ χ ≤ 1, the function χ is identically equal to 1 in a smaller neighborhood of bΩ, and χ is
identically equal to 0 in a neighborhood of the specified point z. Let G be the vector-valued
function defined by the property that G(w) = χ(w)g(w, z) + (1−χ(w))(w− z). On the set
where χ(w) = 1, the function G inherits from g the property that

∑n
j=1Gj(w)(wj−zj) = 1.

When 0 < χ(w) < 1, one has that
∑n

j=1 Gj(w, z)(wj−zj) = χ(w)+(1−χ(w))|w−z|2 > 0.
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1.5 The Cauchy–Fantappiè integral representation

On the set where χ(w) = 0, one has that
∑n

j=1 Gj(w, z)(wj− zj) = |w− z|2, which is equal
to 0 if and only if w = z. Consequently, the Cauchy–Fantappiè form generated by G is a
well-defined closed differential form on closure(Ω) \ {z}.

If f is a holomorphic function, then f(w) times the Cauchy–Fantappiè form generated
by G is still a closed form on closure(Ω) \ {z}. Consequently, the integral of that product
over bΩ equals the integral over the boundary of a small ball centered at z. On that small
neighborhood of z, the function G(w) is equal to w − z by construction. Therefore the
integral of f times the Cauchy–Fantappiè form generated by G is equal to the integral over
the boundary of a small ball centered at z of f times the Bochner–Martinelli kernel, which
equals f(z) by the Bochner–Martinelli formula (1.19). By construction, the restriction
to bΩ of the Cauchy–Fantappiè kernel generated by G equals the Cauchy–Fantappiè kernel
generated by g. Consequently, the Cauchy–Fantappiè integral representation (1.38) does
hold. This completes the first proof of the theorem.

The second proof, which is due to G. M. Henkin [9], elegantly illustrates the power of the
language of differential forms. Consider in Cn×Cn the complex submanifold Γ of complex
dimension 2n−1 consisting of points (ζ, η) such that ζ lies in an open neighborhood of the
closure of Ω, and 〈η, ζ − z〉 = 1. The differential form f(ζ)

∑n
j=1(−1)j−1ηj dη[j] ∧ dζ has

the property that its restriction to Γ is a closed form on Γ. Indeed, the exterior derivative
of f(ζ)

∑n
j=1(−1)j−1ηj dη[j] ∧ dζ computed in Cn × Cn equals nf(ζ) dη ∧ dζ (since f is

holomorphic), which is a form of bidegree (2n, 0), and the restriction of this differential
form to the (2n− 1)-dimensional complex manifold Γ equals 0 for degree reasons.

Consider inside Γ the two submanifolds γ1 and γ2 of real dimension 2n − 1 defined as
follows:

γ1 = { (ζ, η) ∈ Γ : ζ ∈ bΩ and η = (ζ − z)/|ζ − z|2 },
γ2 = { (ζ, η) ∈ Γ : ζ ∈ bΩ and η = g(ζ, z)/〈g(ζ, z), ζ − z〉 }.

By the defining property (1.33) of Cauchy–Fantappiè integrals, the denominators in the
definitions of γ1 and γ2 are nonzero, so γ1 and γ2 are well defined. The property that
〈η, ζ − z〉 = 1 evidently holds both for points in γ1 and for points in γ2, so γ1 and γ2 do lie
in Γ. Moreover, there is a simple homotopy in Γ between γ1 and γ2 determined by setting
η equal to the expression

t
ζ − z
|ζ − z|2

+ (1− t) g(ζ, z)

〈g(ζ, z), ζ − z〉
, where 0 ≤ t ≤ 1.

Consequently,∫
γ1

f(ζ)
n∑
j=1

(−1)j−1ηj dη[j] ∧ dζ =

∫
γ2

f(ζ)
n∑
j=1

(−1)j−1ηj dη[j] ∧ dζ,
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1.5 The Cauchy–Fantappiè integral representation

since the common integrand is a closed differential form on Γ.
Pulling back the integral over γ1 into Cn by using the parametrization of γ1 produces

the Bochner–Martinelli integral of f (in view of Exercise 1.5.2), which equals f(z) by the
Bochner–Martinelli formula (1.19). Similarly, pulling back the integral over γ2 into Cn by
using the parametrization of γ2 produces the Cauchy–Fantappiè integral of f generated
by g. Therefore, as claimed, the Cauchy–Fantappiè integral does equal f(z).

1.5.1 The Cauchy–Fantappiè integral for convex domains

Example 1.5.6 shows that in the case of the ball, one can exhibit an explicit Cauchy–
Fantappiè kernel that is holomorphic in the free variable. One can write down a similar
kernel more generally in the case of convex domains.

Since convexity is a condition that depends on second derivatives, the natural setting is
a bounded domain in Cn defined by a class C2 real-valued function ρ (whose gradient is
nonzero on the boundary of the domain). If one writes z = x+ iy and w = u+ iv, then

2 Re
n∑
j=1

∂ρ

∂wj
(w)(wj − zj) =

n∑
j=1

∂ρ

∂uj
(u, v)(uj − xj) +

∂ρ

∂vj
(u, v)(vj − yj).

The right-hand side equals the real scalar product of the real gradient vector of ρ with the
real vector representing the difference w − z. The convexity of Ω implies that this scalar
product is nonzero when w ∈ bΩ and z ∈ Ω. Therefore one gets a function g satisfying
the condition (1.33) by setting gj equal to ∂ρ/∂wj. In view of Exercise 1.5.3, one has the
following Cauchy–Fantappiè kernel for a convex domain in Cn:

1

(2πi)n
· ∂ρ ∧ (∂∂ρ)n−1(w)〈

∂ρ
∂w

(w), w − z
〉n . (1.39)

As in the case of the ball, this kernel is holomorphic in the free variable z because the
numerator is independent of z and the denominator is holomorphic in z (since the scalar
product conjugates the second factor).

Rewriting (1.39) in terms of surface area measure produces an illuminating integral-
representation formula that involves the complex geometry of the boundary. The statement
of the formula uses the following notation. When w ∈ bΩ, let Eρ(w) denote the determinant
of the Levi form of ρ at w (where the Levi form is viewed as a Hermitian quadratic form
on the complex tangent space). In other words, Eρ(w) equals the product of the n − 1
eigenvalues of the Levi form of ρ at w. The following result is due to Lev Aı̆zenberg [1].
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1.5 The Cauchy–Fantappiè integral representation

Theorem 1.5.7. Let Ω be a bounded convex domain in Cn with class C2 defining func-
tion ρ. If f is a continuous function on the closure of Ω that is holomorphic in Ω, then

f(z) =
(n− 1)!

4πn

∫
bΩ

f(w)
Eρ(w)|∇ρ(w)|〈
∂ρ
∂w

(w), w − z
〉n dSurfaceAreaw when z ∈ Ω, (1.40)

where Eρ is the determinant of the Levi form of ρ.

Proof. In view of Theorem 1.5.5, one has to show that 1
4
Eρ|∇ρ|2 dSurfaceArea equals the

restriction to bΩ of the differential form

(−1)n(n−1)/2(2i)−n|∇ρ(w)|
n∑
j=1

(−1)j−1 ∂ρ

∂wj
∂

(
∂ρ

∂w1

)
∧ · · · [j] · · · ∧ ∂

(
∂ρ

∂wn

)
∧ dw, (1.41)

where the notation [j] indicates that the jth term is omitted.
Temporarily fixing both an index j and an index k, consider how dw[k] terms arise in

the differential form

∂

(
∂ρ

∂w1

)
∧ · · · [j] · · · ∧ ∂

(
∂ρ

∂wn

)
. (1.42)

There is one such term corresponding to each permutation σ of the set Sk of n− 1 indices
{1, . . . , n} \ {k}, and each term comes with a plus or minus sign equal to the sign of the
permutation σ. Now letting k vary shows that (1.42) equals

n∑
k=1

∑
σ∈Sk

sign(σ)
∂2ρ

∂w1∂wσ(1)

· · · [j] · · · ∂2ρ

∂wn∂wσ(n)

dw[k].

One finds from Exercises 1.2.2 and 1.2.3 that the restriction of dw[k]∧dw to the bound-
ary of Ω equals (−1)n(n−1)/2(2i)n(−1)k−1|∇ρ|−1∂ρ/∂wk times the surface area measure.
Consequently, the restriction of the differential form (1.41) to the boundary of Ω equals

n∑
j=1

(−1)j−1 ∂ρ

∂wj

n∑
k=1

(−1)k−1 ∂ρ

∂wk

∑
σ∈Sk

sign(σ)
∂2ρ

∂w1∂wσ(1)

· · · [j] · · · ∂2ρ

∂wn∂wσ(n)

dSurfaceArea.

By staring hard at the preceding expression, one can recognize the factor multiplying the
surface area element as being equal to

− det

∣∣∣∣∣∣∣∣∣∣
0 ∂ρ

∂w1
. . . ∂ρ

∂wn
∂ρ
∂w1

∂2ρ
∂w1∂w1

. . . ∂2ρ
∂wn∂w1

...
...

. . .
...

∂ρ
∂wn

∂2ρ
∂w1∂wn

. . . ∂2ρ
∂wn∂wn

∣∣∣∣∣∣∣∣∣∣
. (1.43)
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1.5 The Cauchy–Fantappiè integral representation

The sum on j corresponds to expanding the (n+ 1)× (n+ 1) determinant across the top
row, and the sum on k corresponds to expanding an n × n minor along the first column.
The sum on permutations σ corresponds to expanding the final (n − 1) × (n − 1) minor.
The extra minus sign in front appears because the factor (−1)j−1 has the wrong parity for
the initial expansion across the top row.

The determinant in (1.43) is sometimes called the Levi determinant, because when n = 2
it equals an expression that Levi introduced to characterize pseudoconvexity through dif-
ferential geometry. Wilhelm Wirtinger (born 15 July 1865, died 15 January 1945) seems
to be the person who first wrote down the corresponding determinant in arbitrary dimen-
sion [38, p. 363]. Subsequently Erich Kähler (born 16 January 1906, died 31 May 2000)
considered the determinant in a different context in his fundamental article [11] (reprinted
in [12]) that introduced the notion later known by the name “Kähler metric”.

In principle, one should be able to compute the Levi determinant (1.43) in terms of
the eigenvalues of the Levi form by clever row and column operations, but there is an
easier method. In deriving (1.43), one could have started not with the expression (1.41)
but with a constant times |∇ρ| ∂ρ ∧ (∂∂ρ)n−1. The latter expression is unchanged if the
coordinates are transformed by a unitary transformation. Indeed, the differential form
∂ρ ∧ (∂∂ρ)n−1 is defined in a coordinate-free manner, and the length of ∇ρ is preserved
by a unitary transformation. Consequently, to evaluate the Levi determinant (1.43) at a
particular boundary point, one may choose convenient coordinates. Suppose that the first
(n − 1) coordinate directions are tangential to the boundary at the given point and that
the Levi form is diagonal at the given point. Expanding the Levi determinant across the
first row and then along the first column shows that (1.43) equals∣∣∣∣ ∂ρ∂wn

∣∣∣∣2Eρ or, equivalently, 1
4
Eρ|∇ρ|2.

That calculation establishes the claim stated at the beginning of the proof.

Exercise 1.5.8. The preceding proof implicitly assumes that the dimension n is at least 2.
Show that when n = 1, equation (1.40) reduces to the ordinary one-dimensional Cauchy
integral formula. (By the standard convention that an empty product is equal to 1, one
has that Eρ = 1 when n = 1.)

Exercise 1.5.9. Although the number of positive eigenvalues of the Levi form is inde-
pendent of the choice of defining function, the eigenvalues themselves do depend on the
defining function. Show that nonetheless the kernel in (1.40) depends only on Ω and not
on the choice of the defining function ρ. Thus one can speak of “the” Cauchy integral for
convex domains.
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1.5 The Cauchy–Fantappiè integral representation

The case of strongly pseudoconvex domains (sketch)

A strongly pseudoconvex domain is locally biholomorphically equivalent to a strongly con-
vex domain. Therefore one expects that the preceding machinery should yield a reasonably
explicit integral representation formula with a kernel that depends holomorphically on the
free variable in the case of a bounded, strongly pseudoconvex domain. The technical com-
plication is passing from a local kernel to a global kernel while preserving holomorphicity
in the free variable.

There are two approaches to implementing this scheme, both of which are merely
sketched here to indicate the ideas. To see details, consult the book of Range [29, Chap-
ter VII, sections 1 and 3] or the original papers. Both approaches use the solvability of the
∂-problem on (a neighborhood of the closure of) a strongly pseudoconvex domain to make
the passage from local information to global information.

Both methods also start with the quadratic “Levi polynomial” of a defining function ρ.
By Taylor’s theorem, the positive definiteness of the complex Hessian of ρ implies that if
w is a point on or near the boundary of Ω, and z is a point in a small neighborhood of w,
then

2 Re
n∑
j=1

∂ρ

∂wj
(w)(wj − zj)− Re

n∑
j=1

n∑
k=1

∂2ρ

∂wj∂wk
(w)(wj − zj)(wk − zk)

≥ ρ(w)− ρ(z) + (positive constant)|w − z|2.

Since the boundary of the bounded domain Ω is compact, the positive constant and the
size of the neighborhood can be chosen to be independent of w. If the point w is on the
boundary of Ω, and the nearby point z is in the closure of Ω but not equal to w, then the
right-hand side is positive. Moreover, one can even allow the point z to go outside the
closure of Ω as long as z stays in a “tomato-shaped” region with the stem pit at w.

Thus a local candidate for the function gj(w, z) needed to guarantee a nonzero denomi-
nator in the Cauchy–Fantappiè form (1.34) is

∂ρ

∂wj
(w)− 1

2

n∑
k=1

∂2ρ

∂wj∂wk
(w)(wk − zk),

an expression that is indeed holomorphic in the free variable z. A natural way to get a
global function gj is to patch this candidate with the function that enters into the Bochner–
Martinelli kernel. Take a cut-off function χ of one real variable that is identically equal
to 1 in a neighborhood of the origin and that has small support. Define a global gj(w, z)
as

χ(|w − z|)
(
∂ρ

∂wj
(w)− 1

2

n∑
k=1

∂2ρ

∂wj∂wk
(w)(wk − zk)

)
+ (1− χ(|w − z|))(wj − zj).
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1.5 The Cauchy–Fantappiè integral representation

This global function does generate a Cauchy–Fantappiè form that reproduces holomorphic
functions on Ω, but the kernel is not globally holomorphic in z.

At this point the two approaches diverge. The original method due independently to
Henkin [9] and to Ramı́rez [27] corrects at the level of functions to obtain a new Cauchy–
Fantappiè form that is globally holomorphic in the free variable z. A later method due
jointly to Norberto Kerzman and Elias M. Stein [15] corrects at the level of forms to obtain
an integral representation with a kernel that is not a Cauchy–Fantappiè kernel but that
differs from a Cauchy–Fantappiè by a relatively tame non-explicit kernel.

In the Kerzman-Stein approach, one starts with the Cauchy–Fantappiè kernel indicated
above. For a fixed w in the boundary, the kernel has a singularity as z tends to w. Since
the kernel is holomorphic with respect to z for z near w, taking ∂z gives a globally defined
kernel that is smooth (identically equal to 0) for z near w. Then one solves a ∂-problem to
correct the kernel to make it globally holomorphic, and the correction term is non-singular
for z near w. Of course one has to do this uniformly with respect to w. The remaining key
point is to see that the correction term does not destroy the reproducing property, since the
corrected kernel is no longer a Cauchy–Fantappiè kernel. One has to show that the integral
over the boundary of Ω of the correction term times a holomorphic function f equals 0.
Since the solution of the ∂z-problem is given by a linear operator, the problem reduces to
showing that the integral over the boundary of Ω of a holomorphic function times ∂z of a
Cauchy–Fantappiè kernel equals 0. A proposition analogous to Lemma 1.3.8 shows that
∂z of any Cauchy–Fantappiè kernel is ∂w-exact, and so property (1.28) of CR-functions
finishes the argument.

In the Henkin-Ramı́rez approach, one initially has the condition (1.33): a certain function
of w and z is nonvanishing when w 6= z. Then one solves a ∂-problem to correct the function
to a new function Φ(w, z) such that Φ(w,w) = 0, and Φ is holomorphic in z and nonvanish-
ing when w 6= z. To get back to a vector-function needed to generate a Cauchy–Fantappiè
kernel, one solves a “division problem” to write Φ(w, z) =

∑n
j=1 φj(w, z)(wj − zj). That

step uses a result known as “Hefer’s lemma” or “Hefer’s theorem” after the 1940 Münster
dissertation of Hans Hefer, an excerpt of which was published posthumously [8]. Appar-
ently Hefer was killed in action in World War II the year after defending his dissertation.1

Theorem 1.5.10 (Hefer). If f is a holomorphic function in a domain of holomorphy Ω
in Cn, then there exist holomorphic functions g1, . . . , gn in Ω× Ω such that

f(w)− f(z) =
n∑
j=1

gj(w, z)(wj − zj) for all z and w in Ω.

1A footnote by H. Behnke and K. Stein to Hefer’s posthumous article says, “Der Verfasser ist 1941 im
Osten gefallen.”
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1.5 The Cauchy–Fantappiè integral representation

Hefer’s theorem is easy when the dimension n equals 1. In that case,

g1(w, z) =


f(w)− f(z)

w − z
, when w 6= z,

f ′(w), when w = z.

Evidently g1 is a continuous function that is holomorphic in each variable separately, so g1

is a holomorphic function of the two variables jointly.
In higher dimensions, there is no simple, general formula for producing a Hefer decom-

position, but the special case of a polynomial function f is easy to handle. By changing
one variable at a time, one can write

f(w1, . . . , wn)− f(z1, . . . , zn) = f(w1, . . . , wn)− f(z1, w2, . . . , wn)

+ f(z1, w2, . . . , wn)− f(z1, z2, w3, . . . , wn)

+ · · ·+ f(z1, . . . , zn−1, wn)− f(z1, . . . , zn).

(The intermediate terms are evaluated at points that need not be in Ω, so this decomposi-
tion makes sense only when f is an entire function.) One achieves the conclusion of Hefer’s
theorem by factoring wk−zk out of the kth term on the right-hand side for each k between
1 and n. As a consequence of this special case, one can obtain Hefer’s theorem for those
domains (even nonpseudoconvex ones) in which polynomials are dense in the holomorphic
functions.

Proof of Hefer’s theorem. The first idea in the proof is to increase the dimension: namely,
view the difference f(w) − f(z) as a holomorphic function on the domain of holomorphy
Ω×Ω in C2n. This holomorphic function vanishes on the n-dimensional complex plane in
C2n where w = z. Consequently, the problem reduces to the following lemma.

Lemma 1.5.11. Let F be a holomorphic function on a domain of holomorphy D in CN .
Suppose 1 ≤ k ≤ N . If F is identically equal to 0 on the slice of D by the (N − k)-
dimensional complex subspace where z1 = z2 = · · · = zk = 0 [in other words, if the function
F (0, . . . , 0, zk+1, . . . , zn) is identically equal to 0], then there are holomorphic functions G1,
. . . , Gk on D such that F (z) = z1G1(z) + · · ·+ zkGk(z) for all z in D.

To obtain Hefer’s theorem from the lemma, set N equal to 2n and k equal to n. Take D to
be the image of the domain of holomorphy Ω×Ω under the invertible linear transformation
that sends the variables (w, z) to (w − z, z).

Proof of the lemma. That the conclusion of the lemma holds locally follows from consider-
ing the local power series expansion of F . The whole difficulty is to see that local solutions
patch together to give a global solution. One way to achieve the patching is to use a
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1.6 The Bochner–Martinelli–Koppelman kernel

proposition from last semester that every holomorphic function on a slice of a domain of
holomorphy by an affine complex subspace of codimension 1 extends to be a holomor-
phic function on the domain. (The proof of that proposition uses the solvability of the
∂-problem on domains of holomorphy.)

In this line of argument, the lemma is proved for all dimensions N simultaneously by an
induction on k. When k = 1, define G1 as follows:

G1(z1, . . . , zN) =

{
F (z1, . . . , zN)/z1, if z1 6= 0,

∂F/∂z1, if z1 = 0.

Next consider a general value of k, supposing that the statement has been proved for
smaller values (for every dimension N). Restrict F to the (N − 1)-dimensional slice of D
where zk = 0. The induction hypothesis yields the existence of holomorphic functions G1,
. . . , Gk−1 on the slice such that

F (z1, . . . , zk−1, 0, zk+1, . . . , zN) =
k−1∑
j=1

zjGj(z1, . . . , zk−1, zk+1, . . . , zN).

The above-mentioned proposition from last semester shows that the Gj extend from the
slice to all of D as holomorphic functions (which one might as well continue to call Gj).

Thus the function F (z) −
∑k−1

j=1 zjGj(z) vanishes when zk = 0. By the basis step of

the induction, there is a holomorphic function Gk on D such that F (z)−
∑k−1

j=1 zjGj(z) =
zkGk(z) for all z in D. Hence the conclusion of the lemma holds.

As indicated above, a Hefer decomposition is feasible not only on domains of holomorphy
but also on many non-pseudoconvex domains. On complete Reinhardt domains, for exam-
ple, one can read off the Hefer decomposition from the (global) power series representation
of f . More generally, if Ω has a schlicht envelope of holomorphy, then one can restrict
a Hefer decomposition for the envelope to obtain a Hefer decomposition for Ω. I do not
know the answer to the following characterization question.

Open problem 1.5.12. For which (non-pseudoconvex) domains does the conclusion of
Hefer’s theorem hold?

1.6 The Bochner–Martinelli–Koppelman kernel

In his last publication [17], Koppelman made the influential observation that the machin-
ery of Cauchy–Fantappiè kernels can be adapted to give integral representations not just
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for functions but also for differential forms. One can see the details worked out using de-
terminant notation similar to Koppelman’s notation in the book by Aı̆zenberg and Dautov
[2, §1]. Range’s notation [29, Chapter IV, §1] uses the Hodge star operator. The notation
used below is different from both of these.

Definition 1.6.1. In Cn, let γ denote the (0, 1)-form
∑n

j=1(wj − zj) dwj. When 0 ≤ q ≤
n− 1, the Bochner–Martinelli–Koppelman kernel Uq(w, z) equals

cn,q
|w − z|2n

γ ∧ (∂zγ)q ∧ (∂wγ)n−q−1,

where cn,q =
(
n−1
q

)
(−1)q(q−1)/2/(2πi)n. Notice that the constant cn,0 is related to but not

equal to the constant cn. (Technically, there should be another subscript on Uq to indicate
the dimension n, but omitting this second subscript simplifies the notation and should
cause no confusion.) The kernel is understood as a double differential form, meaning that
the differentials in the z variables commute with the differentials in the w variables. In
other words, the kernel is a differential form in w whose coefficients are differential forms
in z. For convenience in writing general formulas, one defines both U−1 and Un to be
identically equal to 0.

Exercise 1.6.2. When q = 0, the kernel Uq reduces to the Bochner–Martinelli ker-
nel (1.15).

Exercise 1.6.3. Let β denote γ(w, z)/|w − z|2. Show that

Uq(w, z) = cn,q β ∧ (∂zβ)q ∧ (∂wβ)n−q−1.

(Compare Exercise 1.5.2.)

Theorem 1.6.4 (Koppelman). Let Ω be a bounded domain in Cn with class C1 boundary,
and suppose 0 ≤ q ≤ n. If f is a (0, q)-form with coefficients of class C1 on the closure
of Ω, then∫

bΩ

f(w) ∧ Uq(w, z)−
∫

Ω

∂wf(w) ∧ Uq(w, z)− ∂z
∫

Ω

f(w) ∧ Uq−1(w, z)

=

{
f(z), z ∈ Ω,

0, z /∈ closure(Ω).

Before turning to the proof, one should check that all the terms in the equation make
sense. Since Uq(w, z) is a differential form of type (n, n− q− 1) in w, the differential form
f ∧Uq has type (n, n−1), and this is the right degree for integration over the boundary bΩ.
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The differential form ∂f ∧ Uq is then of type (n, n) in w, and this is the right degree for
integration over the domain Ω. The differential form Uq−1 has type (n, n− (q − 1)− 1) or
(n, n− q) in w, so f ∧ Uq−1 again has the right degree for integration over the domain Ω.

The kernel Uq has a singularity when w = z of order 1/|w−z|2n−1 (the order of singularity
is independent of q). The boundary integral does not see this singularity, for the integration
variable w is in the boundary, and the free variable z is not in the boundary. The two
interior integrals, however, do encounter the singularity. Both are absolutely convergent
singular integrals (under the hypothesis that f and ∂f are continuous on the closure of Ω)
because the order of the singularity is 1 unit less than the dimension of the underlying real
Euclidean space.

A further argument is needed to see that
∫

Ω
f(w) ∧ Uq−1(w, z) is differentiable with

respect to z, and this point is a central issue in the proof of the theorem. One cannot
simply differentiate under the integral sign, because the derivative of Uq−1 has a singularity
of order 2n, and such a singularity is not integrable. To handle this difficulty, split f
as χf + (1 − χ)f , where χ is a smooth cut-off function that is identically equal to 1
in a neighborhood of the boundary and identically equal to 0 in a neighborhood of z.
Then

∫
Ω
χ(w)f(w) ∧ Uq−1(w, z) can be differentiated under the integral sign, because the

singularity where w = z is suppressed by the vanishing of χ(z). On the other hand, the
remaining integral can be written as

∫
Cn(1− χ(w))f(w)∧Uq−1(w, z), with the integration

extended over the whole space, because (1− χ(w))f(w) has compact support in Ω. Since
Uq−1 depends on the difference w − z, one can introduce a new integration variable equal
to this difference. Then it becomes possible to differentiate under the integral sign with
the differentiation acting on f .

Proof of Theorem 1.6.4. As in the proof of the Bochner–Martinelli integral representation,
the idea is to apply the theorem of Stokes to convert the boundary integral into an integral
over Ω. When w 6= z, the kernel Uq(w, z) is a smooth differential form in w of type
(n, n − q − 1), and dw(f(w) ∧ Uq(w, z)) = ∂w(f(w) ∧ Uq(w, z)) = ∂wf(w) ∧ Uq(w, z) +
(−1)qf(w) ∧ ∂wUq(w, z). The following lemma is a key element in the proof.

Lemma 1.6.5. The Bochner–Martinelli–Koppelman kernel Uq satisfies the following iden-
tity:

(−1)q ∂wUq(w, z) = ∂zUq−1(w, z) when w 6= z.

Proof. Using the notation of Exercise 1.6.3, observe that

∂wUq(w, z) = cn,q
(
(∂zβ)q ∧ (∂wβ)n−q + (−1)qq β ∧ (∂zβ)q−1 ∧ ∂w∂zβ ∧ (∂wβ)n−q−1

)
.
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On the other hand,

∂zUq−1(w, z)

= cn,q−1

(
(∂zβ)q ∧ (∂wβ)n−q + (−1)q−1(n− q) β ∧ (∂zβ)q−1 ∧ ∂z∂wβ ∧ (∂wβ)n−q−1

)
.

A routine calculation shows that qcn,q = (−1)q−1(n− q)cn,q−1. Working with double differ-
ential forms means that ∂w∂z = ∂z∂w, so it remains to show that (∂zβ)q ∧ (∂wβ)n−q = 0.

Introduce the notation
∑n

j=1 βj(w, z) dwj for the (1, 0)-form β. In other words, βj(w, z) =

(wj − zj)/|w − z|2. Then
∑n

j=1 βj(w, z)(wj − zj) = 1. Therefore

n∑
j=1

∂βj
∂wk

(w, z)(wj − zj) = 0 and
n∑
j=1

∂βj
∂zk

(w, z)(wj − zj) = 0

for every index k. Now fix points w and z, and let M denote the complex subspace of Cn of
dimension n−1 consisting of complex vectors t such that

∑n
j=1 tj(wj−zj) = 0. For each k,

the component of dzk in ∂zβ is a (1, 0)-form in w whose coefficients lie in M , and similarly
for the component of dwk in ∂wβ. The wedge product of n such (1, 0) forms in w whose
coefficients lie in an (n− 1)-dimensional subspace of Cn must vanish. This establishes the
claim that (∂zβ)q ∧ (∂wβ)n−q = 0 and thereby finishes the proof of the lemma.

The proof of the lemma (compare [29, pp. 173–174]) works more generally for any
Cauchy–Fantappiè form of order q.

The preceding discussion contains the complete proof of the theorem in the case that z
is outside the closure of Ω. Indeed, in that case the kernel Uq has no singularity inside Ω,
so Stokes’s theorem implies that∫

bΩ

f(w) ∧ Uq(w, z) =

∫
Ω

∂wf(w) ∧ Uq(w, z) +

∫
Ω

(−1)qf(w) ∧ ∂wUq(w, z).

Applying the lemma and interchanging ∂z with the integral in w finishes the argument.
Moreover, essentially the same reasoning handles the case when the point z is inside Ω

if the coefficients of f vanish at z. Indeed, one can apply Stokes’s theorem to the region
Ω \ B(z, ε) and take the limit as ε → 0. The integral

∫
bB(z,ε)

f(w) ∧ Uq(w, z) tends to 0

because Uq is of order ε−(2n−1) on bB(z, ε), the surface area of bB(z, ε) is of order ε2n−1,
and the continuous differential form f(w) tends to 0 at z by hypothesis. The integral∫

Ω\B(z,ε)
∂wf(w) ∧ Uq(w, z) tends to

∫
Ω
∂wf(w) ∧ Uq(w, z) because Uq has an integrable

singularity when w = z. Finally, the term ∂z
∫

Ω\B(z,ε)
f(w) ∧ Uq−1(w, z) tends to the limit

∂z
∫

Ω
f(w) ∧ Uq−1(w, z) because the non-integrable singularity of order 2n of ∂zUq−1(w, z)

is reduced one unit by the vanishing of the coefficients of f(w) at z.
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The general case can be handled by induction on q. The basis step (q = 0) is Theo-
rem 1.3.4 for the Bochner–Martinelli kernel. Suppose, then, that the theorem has been
established for forms of degree q − 1, and let f be a (0, q)-form.

Because Koppelman’s formula is linear in f , it suffices to consider a differential form f
that consists of a single term φ(w) dwj1 ∧ · · · ∧ dwjq . The Bochner–Martinelli–Koppelman
kernel evidently is invariant under permutations of the coordinates, so there is no loss of
generality in assuming that f(w) = φ(w) dw1∧· · ·∧dwq. The observation above shows that
the conclusion of the theorem holds for the differential form (φ(w)−φ(z)) dw1 ∧ · · · ∧ dwq,
so the problem reduces to considering the form φ(z) dw1 ∧ · · · ∧ dwq. In other words, it is
enough to prove Koppelman’s formula for a form f with constant coefficients : namely, the
form dw1 ∧ · · · ∧ dwq.

Since dw1 ∧ · · · ∧ dwq = d(w1 dw2 ∧ · · · ∧ dwq), one has that∫
bΩ

dw1 ∧ · · · ∧ dwq ∧ Uq(w, z) =

∫
bΩ

w1 dw2 ∧ · · · ∧ dwq ∧ (−1)q dwUq(w, z).

By Lemma 1.6.5, the latter integral equals ∂z
∫
bΩ
w1 dw2 ∧ · · · ∧ dwq ∧ Uq−1(w, z). The

induction hypothesis implies that this expression equals

∂z

(∫
Ω

dw1 ∧ dw2 ∧ · · · ∧ dwq ∧ Uq−1(w, z) + ∂z(irrelevant) + z1 dz2 ∧ · · · ∧ dzq
)
.

For the constant-coefficient form f under consideration (which in particular is ∂-closed),
this expression is equal to

∫
Ω
∂wf(w) ∧ Uq(w, z) + ∂z

∫
Ω
f(w) ∧ Uq−1(w, z) + f(z). That

completes the induction step and thus finishes the proof of the theorem.

A noteworthy consequence of Koppelman’s theorem is that for (0, n)-forms (forms of top
degree), one can solve the ∂-equation immediately by an integral formula. In particular,
no geometric hypothesis is needed on the domain for solvability of the ∂-problem in top
degree.

Koppelman’s theorem also demonstrates that every compactly supported, ∂-closed (0, q)-
form in Cn (where 1 ≤ q ≤ n) is ∂-exact. (Apply the theorem on a large ball containing
the support, in which case the boundary integral disappears.) When q = n, the solution
does not necessarily have compact support, even if the data has compact support. (The
top-dimensional case is analogous to case when the dimension n = 1.) When 1 ≤ q ≤ n−1,
however, there is a solution with compact support, but this proposition is harder to prove
when q > 1 than when q = 1.

1.6.1 Solving ∂ on convex domains

Combining the Bochner–Martinelli–Koppelman integral representation with the ideas of
Cauchy–Fantappiè forms leads to an explicit integral formula for solving the ∂-problem on
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a bounded convex domain. Recall from section 1.5.1 that if ρ is the defining function of a
convex domain Ω, then

∑n
j=1

∂ρ
∂wj

(w)(wj − zj) 6= 0 when w ∈ bΩ and z ∈ Ω. By analogy

with the definition of the Bochner–Martinelli–Koppelman kernel, one can construct on
convex domains a Cauchy–Fantappiè-Koppelman kernel for differential forms as follows.

Let γ̃(w) denote the (0, 1)-form
∑n

j=1
∂ρ
∂wj

(w) dwj, and let β̃(w, z) denote the quotient

γ̃(w)

/
n∑
j=1

∂ρ

∂wj
(w)(wj − zj)

for w in bΩ and z ∈ Ω. Let Ũq(w, z) denote the kernel cn,q β̃ ∧ (∂zβ̃)q ∧ (∂wβ̃)n−q−1, as

in Exercise 1.6.3. Since the coefficients of β̃ depend holomorphically on z, one has that
Ũq(w, z) = 0 when q ≥ 1. One cannot, however, simply replace Uq in Theorem 1.6.4

with Ũq, because Ũq is not well defined when w is inside Ω (since the denominator can

be 0). Nonetheless, one can use Ũq to construct an integral solution operator for ∂ by
using the following lemma, which actually holds more generally for the difference of every
pair of Cauchy–Fantappiè-Koppelman forms.

Lemma 1.6.6 (Koppelman). When w is in the boundary of Ω and z is in the interior of Ω,

the difference Uq(w, z) − Ũq(w, z) can be written as the sum of two (explicit) differential
forms, one of which is ∂w-exact and the other of which is ∂z-exact.

Assuming the lemma for the moment, subtract
∫
bΩ
f(w)∧ Ũq(w, z) (which equals 0 when

q ≥ 1) in the formula of Theorem 1.6.4. Using the lemma to introduce differential forms

Φ and Ψ such that Uq(w, z)− Ũq(w, z) = ∂wΦ(w, z) + ∂zΨ(w, z), one then has when q ≥ 1
that∫

bΩ

f(w) ∧ ∂wΦ(w, z) + ∂z

∫
bΩ

f(w) ∧Ψ(w, z)

−
∫

Ω

∂wf(w) ∧ Uq(w, z)− ∂z
∫

Ω

f(w) ∧ Uq−1(w, z) = f(z), z ∈ Ω.

When f is a ∂-closed (0, q)-form, and q ≥ 1, the preceding equation reduces to the state-
ment that

f(z) = ∂z

(∫
bΩ

f(w) ∧Ψ(w, z)−
∫

Ω

f(w) ∧ Uq−1(w, z)

)
.

Thus one has an explicit integral solution operator for the ∂-equation on bounded convex
domains.

From the explicit formula, one can deduce regularity properties of the solution. As
will be shown below, the coefficients of the form Ψ(w, z) depend on β and β̃ and their
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first derivatives. Consequently, Ψ(w, z) is class C∞ in z inside Ω uniformly for w in bΩ.
Therefore the first term,

∫
bΩ
f(w)∧Ψ(w, z), belongs to class C∞(Ω) if f is continuous on bΩ.

For the second term,
∫

Ω
f(w) ∧ Uq−1(w, z), consider separately the cases of f supported

away from z and f with compact support. In the first case, the integral depends smoothly
on z since Uq−1(w, z) is smooth when z 6= w. In the second case, use that Uq−1(w, z)
depends only on the difference w− z; after introducing a new integration variable equal to
w− z, one can differentiate under the integral sign to see that the integral is as smooth as
f is. In conclusion, if f is a ∂-closed (0, q)-form (where q ≥ 1) of class Ck (where k ≥ 1)
on the closure of a bounded convex domain Ω, then the above integral solution operator
produces a (0, q−1)-form u of class Ck(Ω) such that ∂u = f . (Compare [29, pp. 172–176].)

Proof of Lemma 1.6.6. Convexity is not needed in the proof of the lemma. The proof
uses only the property that the coefficients β̃j of the (1, 0)-form β̃ have been chosen such

that
∑n

j=1 β̃j(w, z)(wj − zj) = 1 (and similarly for β). In other words, the lemma (like
Lemma 1.6.5) is a general combinatorial fact about Cauchy–Fantappiè-Koppelman forms.

The idea is to make a homotopy between Uq and Ũq. First, let α(w, z, t) denote the sum

tβ(w, z) + (1− t)β̃(w, z). Next, define a differential form Vq such that

Vq(w, z, t) = cn,q α ∧ (∂zα)q ∧ (∂wα)n−q−1.

Finally, observe that

Uq(w, z)− Ũq(w, z) =

∫ 1

0

dtVq(w, z, t).

(In the differential form dtVq, the three variables w, z, and t are viewed as commuting with
each other.) The proof of the lemma now reduces to showing that dtVq is the sum of a
∂w-exact form and a ∂z-exact form.

The technical tool in the argument is the same one as in the proof of Lemma 1.6.5.
Namely, the coefficients αj of the (1, 0)-form α have the property that

∑n
j=1 αj(w, z, t) = 1,

so dtα equals dt times a (1, 0)-form in w whose coefficients lie in the (n − 1)-dimensional
subspace M of Cn consisting of complex vectors t such that

∑n
j=1 tj(wj−zj) = 0. Similarly,

for each k the dzk component of ∂zα is a (1, 0)-form in w whose coefficients lie in M ; and
for each k the dwk component of ∂wα is a (1, 0)-form in w whose coefficients lie in M .
The wedge product of n forms, each of which is one of dtα, ∂zα, and ∂wα, must vanish,
since there cannot exist n linearly independent (1, 0)-forms in w whose coefficients lie in
an (n− 1)-dimensional subspace of Cn.

In view of the preceding observation,

dtVq = cn,q
(
0 + q α ∧ dt∂zα ∧ (∂zα)q−1 ∧ (∂wα)n−q−1

+(n− q − 1)α ∧ (∂zα)q ∧ dt∂wα ∧ (∂wα)n−q−2
)
.
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Similarly,

∂z
(
α ∧ dtα ∧ (∂zα)q−1 ∧ (∂wα)n−q−1

)
= α ∧ ∂zdtα ∧ (∂zα)q−1 ∧ (∂wα)n−q−1

+ (−1)q−1(n− q − 1)α ∧ dtα ∧ (∂zα)q−1 ∧ ∂z∂wα ∧ (∂wα)n−q−2,

and

∂w
(
α ∧ dtα ∧ (∂zα)q ∧ (∂wα)n−q−2

)
= −α ∧ ∂wdtα ∧ (∂zα)q ∧ (∂wα)n−q−2 + q α ∧ dtα ∧ ∂w∂zα ∧ (∂zα)q−1 ∧ (∂wα)n−q−2.

Comparing these three equations shows that dtVq = ∂wφ+ ∂zψ, where

φ = −(n− q − 1)cn,q α ∧ dtα ∧ (∂zα)q ∧ (∂wα)n−q−2

and
ψ = qcn,q α ∧ dtα ∧ (∂zα)q−1 ∧ (∂wα)n−q−1.

Consequently, Uq − Ũq = ∂wΦ + ∂zΨ, where Φ =
∫ 1

0
φ and Ψ =

∫ 1

0
ψ.

Knowing the solvability of the ∂-equation on bounded convex domains leads to a proof
of Lemma 1.3.38 (a point that was left open on page 32). Although that lemma stated
solvability of the ∂-equation on (0, 1)-forms in class C1(Cn), the following more general
statement is no more difficult to prove.

Theorem 1.6.7. If G is a ∂-closed (0, q)-form (where q ≥ 1) of class Ck (where k ≥ 1)
on the whole space Cn, then there exists a (0, q − 1)-form u of class Ck on Cn such that
∂u = G.

Proof. Exhaust Cn by an increasing sequence of nested, concentric, closed balls Bj. In
view of the discussion above, one can find a form u of class Ck(Cn) such that ∂u = G in a
convex neighborhood of Bj. The difficulty is to splice together these solutions for different
values of j to get a global solution.

When q = 1, one can do the splicing by the “Mittag-Leffler trick” that is familiar from
the theory of meromorphic functions of one complex variable. In this case, u is a function
(a (0, 0)-form). The idea is to construct recursively a sequence of functions uj of class
Ck(Cn) such that ∂uj = G in a convex neighborhood of Bj and |uj+1 − uj| < 2−j on Bj.
Then the telescoping sum u1+(u2−u1)+(u3−u2)+· · · will converge, uniformly on compact
sets, to a function u such that ∂u = G in Cn. Supposing that a certain uj has already
been constructed, to construct uj+1 one first finds u such that ∂u = G in a neighborhood
of Bj+1. Then ∂(u − uj) = 0 in a neighborhood of Bj, so there exists a holomorphic
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polynomial v such that |u− uj − v| < 2−j in a neighborhood of Bj. (For example, v could
be a partial sum of the Taylor series of u− uj.) The function u− v will serve for uj+1.

When q > 1, the approximation argument is unnecessary, for one can construct the
sequence of forms uj to have the stability property that uj+1 = uj on Bj. The existence of
the limit limj→∞ uj is then trivial. To construct uj+1 (supposing that uj has already been
constructed), first find u such that ∂u = G in a neighborhood of Bj+1. Then ∂(u−uj) = 0
in a neighborhood of Bj, so there exists a form v of class Ck(Cn) such that ∂v = u− uj in
a neighborhood of Bj. The form u− ∂v will serve for uj+1.

The method of proof of Theorem 1.6.7 applies more generally to show that the class
of domains on which the ∂-equation is solvable (on forms of all degrees) is closed under
increasing unions. (Compare [10, proof of Theorem 2.7.8].)
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with a Georgian summary)
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