Concepts to Know #2
Math 141
3.1-3.3, 6.1-6.4, 7.1-7.3

- 3.1 - Graphing Inequalities
 Graphing Lines
 Labeling lines (EQUALITIES!)
 Shading the FALSE region
 Finding corner points
 Bounded - can enclose feasible region in a circle
 Unbounded - cannot enclose feasible region in a circle

- 3.2 - Setting-up LP Problems
 Defining variables correctly
 OBJ Function (Max or Min statement)
 Constraints (Almost always inequalities)

- 3.3 - Graphical Solutions to LP Problems
 Graph constraints to find feasible region - including corner points
 Look at the placement of the feasible region - decide if a max or min exists in that region
 Set up chart with corner points and evaluate OBJ function at each corner point
 Locate the max or min value depending on the problem
 If solving a word problem, be able to give answer in terms the problem. Be able to determine leftover resources.

- 6.1 - Sets and Set Operations
 Know how to read both roster and set-builder notation
 Know the meaning of \(\emptyset, \in, \notin, \subseteq, \subset, \cap, \cup, A^C, \text{ and } U\)
 Know DeMorgan’s Laws
 \[(A \cup B)^C = A^C \cap B^C\]
 \[(A \cap B)^C = A^C \cup B^C\]
 Be able to shade portions of Venn diagrams
 Be able to use set notation to describe regions
 Be able to read set notation to describe sets in words

- 6.2 - The Number of Elements in a Set
 \(n(A) = \) the number of elements in a set
 If disjoint, \(n(A \cup B) = n(A) + n(B)\)
 For any sets, \(n(A \cup B) = n(A) + n(B) - n(A \cap B)\)
 Be able to fill in the sections of a Venn diagram with the number of elements in each section

- 6.3 - The Multiplication Principle
 The total # of ways to perform a series of tasks is the product of the # of ways to perform each subtask
 Be able to draw a tree diagram

- 6.4 - Permutations and Combinations
 Permutations - ORDER MATTERS!
 Things in a Line or Row, Titles for Group Members, etc.
 \(n!\) ways to permute \(n\) distinct objects
 \[\frac{n!}{n_1!n_2!\ldots n_r!}\] ways to permute \(n\) non-distinct obj.
 Combinations - ORDER DOES NOT MATTER!
 Groups where people have no titles, etc.
 Know how to use calc. to find the # of perm. and comb.
 Mixed Problems - counting with both perm. and comb. in the same problem

- Counting Handouts
7.1 - Experiments, Sample Spaces, and Events

Sample Points - outcomes of an exp.

Sample Space \((S)\) - a set of all possible sample points

A common sample space is that of rolling two fair dice.

Events - subsets of \(S\)

\(\emptyset\) - impossible event

\(S\) - certain event

Simple Events - contain exactly one sample point

There are \(2^n\) total events for an exp. having \(n\) sample points.

Mutually Exclusive Events - don’t occur at the same time

\(A \cap B = \emptyset\)

\(P(A \cup B) = P(A) + P(B)\)

7.2 - Definition of Probability

\(P(E)\) denotes the prob. that event \(E\) occurs

\(P(E)\) is a NUMBER such that \(0 \leq P(E) \leq 1\)

Uniform Sample Space - all outcomes are equally likely; the prob. of each simple event is \(1/n\) where \(n=\text{the number of outcomes}\)

Probability Distribution - a TABLE giving the prob. associated with each simple event

7.3 - Rules of Probability

\(P(S) = 1\)

\(0 \leq P(E) \leq 1\) for every event \(E\)

\(P(E \cup F) = P(E) + P(F) - P(E \cap F)\)

\(P(E) + P(E^C) = 1\)