Quiz 3

- 5 minute individual quiz;
- Answer the questions in the space provided. If you run out of space, continue onto the back of the page. Additional space is provided at the end;
- **Show and explain all work;**
- **Underline** the answer of each step;
- The use of books, personal notes, **calculator**, cellphone, laptop, and communication with others is forbidden;
- By taking this quiz, you agree to follow the university’s code of academic integrity.

Exercise 1 100%

Find the general solution to the following ODE

\[y'' + y = x \sin(x) \]

and graph the evolution of \(y(x) \) for large values of \(x > 0 \).
Quiz 2: solutions

Exercise 1 100%

We first consider the homogeneous equation by solving the characteristic equation
\[\lambda^2 + 1 = 0. \]
This is \(\lambda = \pm i \). Therefore two linearly independent solutions of the homogeneous equation are given by
\[y_1(x) = \text{Re}(e^{ix}) = \cos(x), \quad y_2(x) = \text{Im}(e^{ix}) = \sin(x). \]
We now guess a particular solution of the form
\[y_p(x) = \text{Im}(z_p(x)), \quad \text{where} \quad z_p(x) = w_p(x)e^{ix}. \]
Plugging \(z_p(x) \) into the ODE we get
\[w''_p + 2iw'_p = x, \tag{1} \]
leading to the educated guess for \(w_p(x) \)
\[w_p(x) = Ax^2 + Bx \]
for some constants \(A \) and \(B \). Plugging \(w_p(x) \) in (1) yields
\[A = -\frac{i}{4}, \quad B = \frac{1}{4}. \]
Therefore,
\[y_p(x) = \text{Im}(z_p(x)) = \text{Im} \left(\left(-\frac{i}{4}x^2 + \frac{1}{4}x \right)(\cos(x) + i\sin(x)) \right) \]
\[= \frac{1}{4}x \sin(x) - \frac{x^2}{4} \cos(x). \]
and
\[y(x) = C_1 \cos(x) + C_2 \sin(x) + \frac{1}{4}x \sin(x) - \frac{x^2}{4} \cos(x), \]
for some constants \(C_1 \) and \(C_2 \).
For large values of \(x \) the solution \(y(x) \) looks like
\[y(x) \approx -\frac{x^2}{4} \cos(x). \]
The graph is provided in Fig. 1.
Figure 1: graph of $y(x) = -\frac{x^2}{2} \cos(x)$.