1. Title: Asymptotic behavior of the Schrödinger equation

2. Author: Zhaosheng Feng, Department of Mathematics, University of Texas-Pan American, Edinburg, TX, 78541

3. Abstract: The time-independent Schrödinger equation for the motion of an electron of mass μ and charge $-e$ ($e > 0$) in the field of two fixed Coulomb centers with charges Z_1e and Z_2e takes the form:

$$
\left(-\frac{\hbar^2}{2\mu} \Delta - \frac{Z_1 e^2}{r_1} - \frac{Z_2 e^2}{r_2} \right) \Psi(\vec{r}) = E \Psi(\vec{r}),
$$

where r_1 and r_2 are the distances of the electron from the two centers, \vec{r} is the position vector of the electron, and E is the electronic energy. In this talk, we will present a qualitative analysis and asymptotic behavior of this equation under certain parametric conditions.