Enumerative Combinatorics with Fillings of Polyominoes

Catherine Yan
Texas A&M University
ICTP-IPM Workshop and Conference
In Combinatorics and Graph Theory
September, 2012
• Enumerative Combinatorics: counting the number of elements of a finite set S, e.g., permutations, words, matchings, set partitions, integer partitions, paths, graphs …

• Combinatorial statistics $f: S \rightarrow \mathbb{N}$
 e.g. cycle, length, block, degree...
Outline

1. Symmetry of the longest chains
 ◦ Subsequences in permutations and words
 ◦ Crossings and nestings in matchings and graphs
 ◦ A new model: fillings of moon polyominoes

2. Combinatorics of Fillings of Moon polyominoes
 ◦ Northeast and southeast chains
 ◦ Forbidden patterns
 ◦ Transformations
 ◦ Connections to other objects
Part I: Symmetry of the longest chains

- **Permutations:**
 - 732816549 (increasing subsequence)
 - 732816549 (decreasing subsequence)

 \[
 \text{is}(w) = |\text{longest i.s.}| = 3
 \]
 \[
 \text{ds}(w) = |\text{longest d.s.}| = 4
 \]

- [Deift, Baik & Johansson’99] Asymptotic distribution of $\text{is}(w)$ and $\text{ds}(w)$.

- $\text{is}(w)$ and $\text{ds}(w)$ are symmetric.
Crossings and nestings in matchings of \([2n]\) are symmetric!

\[(cr_2, ne_2)\] are symmetric!

e.g. \[
\begin{array}{cc}
2 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 2 \\
\end{array}
\]

\# noncrossing matchings of \([2n]\)

= \# nonnesting matchings of \([2n]\)

= nth Catalan number
Conjecture:

\[
\#\text{Matchings of } [2n]\text{ with no } k\text{-crossings} = \#\text{ Matchings of } [2n]\text{ with no } k\text{-nestings}
\]
Crossing and nesting number

For a matching M,
\[
\text{cr}(M) = \max \{ k : M \text{ has a } k\text{-crossing} \} \\
\text{ne}(M) = \max \{ k : M \text{ has a } k\text{-nesting} \}
\]

What’s the relation between \text{cr} and \text{ne}?
Main result on Matchings

Theorem [Chen, Deng, Du, Stanley & Y, 07]
The pair \((\text{cr}(M), \text{ne}(M))\) has a symmetric joint distribution over all matchings on \([2n]\).

Corollary.
\[
\# \text{ matchings with no k-crossing} = \# \text{ matchings with no k-nesting}
\]
Idea:

- **Oscillating tableau**: a sequence of Ferrers diagrams $\emptyset = \lambda^0, \lambda^1, \ldots, \lambda^{2n} = \emptyset$ s.t.

$$\lambda^i = \lambda^{i-1} \pm \square$$
Theorem [Stanley & Sundaram’90]
There is a bijection between matchings of
[2n] and oscillating tableaux of length 2n.

- It is realized by using standard Young
tableaux and applying the RSK algorithm.

Theorem [CDDSY]
Taking conjugation in the tableaux
exchanges cr(M) and ne(M).
Set Partitions of $[n]$

- A graphical representation
 \[\pi = \{1, 4, 5, 7\} \{2, 6\} \{3\} \]

- **Theorem.** [CDDSY]
 \((cr(\pi), ne(\pi))\) has a symmetric distribution over all partitions of $[n]$.

Trieste, Italy, September 2012
Filling of the triangular board

Crossing: anti-identity submatrix (NE-chain)
Nesting: identity submatrix (SE-chain)
An extension to Ferrers diagram

01-filling of any Ferrers diagram F
Every row/column has at most one 1.

NE-chain J_k

SE-chain I_k

Trieste, Italy, September 2012
[Krattenthaler’06]
Given a Ferrers diagram \(F \) and an integer \(n \), then \((\text{NE}(F), \text{SE}(F))\) has a symmetric distribution over \(01 \)-fillings of \(F \) with \(n \) 1’s.
Generalized triangulation of n-gon

k-triangulation:
no \(k+1 \) diagonals that are mutually intersecting
Results about k-triangulation

- [Capoyleas & Pach’92] k-triangulations of an n-gon has at most $k(2n-2k-1)$ lines.
- [Dress, Koolen & Moulton’02] maximal k-triangulation always has $k(2n-2k-1)$ lines
- [Jonsson’05] #maximal k-triangulations = a determinant of Catalan numbers.
Catalan number implies symmetry!

try to avoid
[Jonsson’05, Jonsson & Welker’07]: The number of 01-fillings with m nonzero entries that avoid the matrix J_k depends only on the size of the columns, not on the ordering of the columns.
[Rubey’11]: The number of 01-fillings with \(m \) nonzero entries that avoid the matrix \(J_k \) depends only on the size of the columns, not on the ordering of the columns.

Symmetry between \(I_k \) and \(J_k \): flipping the moon polyomino
The General Model: **fillings of moon polyominoes**

- **Polyomino**: a finite set of square cells

- **Moon polyomino**:
 - Convex
 - intersection-free (*no skew shape*)

![Polyomino Examples](image-url)
Fillings of moon polyominoes

- Assign an integer to each square

Permutations \rightarrow Words \rightarrow Matchings \rightarrow Set partitions

Graphs \rightarrow Ferrers diagram \rightarrow Stack polyomino \rightarrow Moon polyomino

Trieste, Italy, September 2012
Part II: Combinatorics of fillings of moon polyominoes

- Northeast and southeast chains
- Forbidden patterns
- Transformations
- Connections to other objects
The model is general: Example 1. Chains of length 2

Permutation: *inversion* and *coinversion*

π = 624153

- *inversion*: \{(i - j): i > j \}
- *coinversion*: \{(i - j): i < j \}

\[\text{inv}(\pi) = 9 : \{62, 64, 61, 65, 63, 21, 41, 43, 53\} \]

\[\text{coinv}(\pi) = 6: \{24, 25, 23, 45, 15, 13\} \]

\[\sum_{\pi} p^{\text{inv}(\pi)} q^{\text{coinv}(\pi)} = \prod_{k=1}^{n} [k]_{p,q} \]

where \([k]_{p,q}\) is the \((p,q)\)-integer \(p^{k-1} + p^{k-2}q + \ldots + pq^{k-2} + q^{k-1}\).
On words over \(\{1^{n_1}, 2^{n_2}, \ldots, k^{n_k}\} \)

- A word is an arrangement of \(1^{n_1}, 2^{n_2}, \ldots, k^{n_k}\)

\[
\sum_{W} p^{inv(w)} q^{coinv(w)} = \binom{n}{n_1, \ldots, n_k}_{p,q}.
\]

- Similar results for
 - Matchings [de Sainte-Catherine'83]
 - Set partitions [Kasraoui & Zeng'06]
 - Linked partitions [Chen, Wu & Y' 08]
 - Crossing and alignment for permutations [Corteel'07]
Theorem [Kasraoui’10]

The pair \((\text{ne}2, \text{se}2)\) has a symmetric joint distribution over the set of 01-fillings of a moon polyomino with any given column sum.
Four mixed statistics

- Bicolor the rows of M: $(S, M-S)$

top-mixed statistic $\alpha(S,M)$:

bottom-mixed statistic $\beta(S,M)$:
Four mixed statistics

- Bicolor the columns of M: $(T, M-T)$

left-mixed statistic $\gamma(T, M)$:

right-mixed statistic $\delta(T, M)$:

Trieste, Italy, September 2012
Symmetry on mixed statistics

Theorem. [Chen, Wang, Y, Zhao’10]
Let $\lambda(A,M)$ be any of these four mixed statistics. Then the joint distribution of the pair

$$(\lambda(A, M), \lambda(M-A, M))$$

is symmetric and independent of the subset A.

Note:

$$(\lambda(\emptyset, M), \lambda(M, M)) = (\text{se}2(M), \text{ne}2(M))$$
$$(\lambda(M, M), \lambda(\emptyset, M)) = (\text{ne}2(M), \text{se}2(M))$$

Special case for permutations: Chebikin’08.
The model is special enough!

Many things happen inside rectangles!
Example 2: k-noncrossing vs k-nonnesting

Problem: # fillings with no k-crossing

= # fillings with no k-nesting

Method: Start with a filling with no k-crossing, then replace every appearance of k-nesting by other patterns.

- [Backelin, West, Xin’07] for 01-fillings of Ferrers diagrams
- [de Mier’07] for multi-graphs with fixed degree sequences
It applies to other patterns.

- Both papers compared patterns J_k and

$$F_k = \begin{bmatrix} J_{k-1} & 0 \\ 0 & 1 \end{bmatrix}$$

- One can get more Wilf-equivalent pairs.

$$\begin{bmatrix} C & 0 \\ 0 & A \end{bmatrix}, \quad \begin{bmatrix} D & 0 \\ 0 & A \end{bmatrix}$$
Example 3. The major index

- For a word $a_1 \ a_2 \ \ldots \ a_n$, a descent is a position i such that $a_i > a_{i+1}$.
- $\text{maj}(w) = \sum \{ i : i \in \text{DES}(w) \}$.
- [MacMahon'1916] The major index is equadistributed to $\text{inv}(w)$ over words.
Example 3. The major index

- For a word $a_1 a_2 \ldots a_n$, a descent is a position i such that $a_i > a_{i+1}$.
- $\text{maj}(w) = \sum \{ i : i \in \text{DES}(w) \}$.
- [MacMahon’1916] The major index is equadistributed to $\text{inv}(w)$ over words.

[Chen, Poznanovik, Y & Yang’10]

The major index can be extended to 01-fillings of moon polyominoes, which has the same distribution as ne_2.
Foata’s map Φ with $\text{inv}(\Phi(w)) = \text{maj}(w)$

- **Recursive Definition:**
 - If w has length 1, $\Phi(w) = w$.
 - Otherwise, $w = w' a$, then
 \[
 \Phi(w) = \gamma_a(\Phi(w')) a
 \]
Many transformations!

- [CPYY] Foata-type transformations can be defined on fillings of left-aligned stack polyominoes which carry maj to ne_2.
From polyomino to polyomino

- Bijection f from fillings of M to fillings of N s.t. $\text{maj}(F) = \text{maj}(f(F))$
- Bijection g from fillings of M to fillings of N s.t. $\text{ne}_2(F) = \text{ne}_2(g(F))$
And more…

- Lattice path counting and descents in Ferrers diagrams
- Rook placement with restrictions
- Pattern avoidance and appearances
- Poset, P-partitions …
Relation to other areas…

- Free probability — noncrossing diagrams

Trieste, Italy, September 2012
Graph optimization and layout: stack, queue, and arch
• Combinatorial computational biology: RNA pseudo knot structures
Thank you very much!

Trieste, Italy, September 2012