NUMERICAL ANALYSIS QUALIFIER
January 12, 2009

Problem 1. Let A and B be matrices in $\mathbb{R}^{n \times n}$, A be non-singular, and satisfy the inequality $\|A^{-1}\|_2\|B\|_2 \leq q$ with a constant $q < 1$. Here $\| \cdot \|_2$ is the matrix norm subordinate to the Euclidean norm in \mathbb{R}^n.

(a) Show that $C = A + B$ is non-singular.
(b) Show that the iteration process $Ax^{j+1} = b - Bx^j$, $j = 0,1,\ldots$ converges for any x^0 to the solution of the system $Cx = b$. Give an estimate for the Euclidean norm of error $x^j - x$ in terms of q.
(c) Let $A = 2I$, where I is the identity matrix in $\mathbb{R}^{n \times n}$, and let B be the matrix with entries of -1 on the two main co-diagonals and zeros elsewhere. Compute $\|A^{-1}\|_2\|B\|_2$ in terms of n.

Problem 2. Let P^n denote the space of polynomials of degree less than or equal to n. Let $\|f\|_2^2 = \int_0^1 |f(x)|^2 \, dx$ and define $\Pi_n f$ to be the best approximation to f in P^n in the norm $\| \cdot \|_\omega$, i.e.

$$\|\Pi_n f - f\|_\omega = \min_{\phi \in P_n} \|f - \phi\|_\omega.$$

Finally, let $T_k(x)$ denote the Chebyshev polynomial of order k. You may use the fact that T_k is ω-orthogonal to P^{k-1}.

(a) Give a formula for $\Pi_n f$ in terms of the Chebyshev polynomials $\{T_k(x)\}_{k=0}^n$.
(b) Let $f \in P^{n+1}$. Show that

$$\|f - \Pi_n f\|_\infty = \inf_{q \in P_n} \|f - q\|_\infty.$$

Problem 3. Consider the initial value problem for the ordinary differential equation

$$y' = f(y,t), \quad y(t_0) = y_0$$

and a one-step numerical method of the form

$$u_{n+1} = u_n + h \, M \left(u_n, t_n \right),$$

where $u_0 = y_0$, $h \in (0,1)$ is the step size, $u_n \approx y(t_n)$, and $t_{n+1} = t_n + h$.

(a) Rewrite the extrapolated method defined by

$$u_{n+1} = u_n + h \, M \left(u_n, t_n \right),$$

as a one-step method and find all values of α and β for which the above scheme is consistent?
(b) Find the values of α and β which make the above method second order.
(c) Prove or disprove: The method of Part (b) is absolutely stable (A-stable).

Problem 4. Let $\Omega = (0,1)$ and u be the solution of the second order hyperbolic problem:

$$u_{tt} - u_{xx} = 0 \quad \text{for} \quad (x,t) \in \Omega \times (0,T),$$

$$u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x) \quad \text{for} \quad x \in \Omega,$n$$

$$u(0,t) = 0, \quad u(1,t) = 0 \quad \text{for} \quad t \in (0,T).$$
(a) Describe the finite difference scheme for this initial value problem which results when the spatial derivative is approximated by the three point stencil at time level \(n \) and the second order partial derivative with respect to time is discretized by the central difference:

\[
\begin{align*}
 u_{xx}(x_i, t_n) &\approx \frac{U^n_{i-1} - 2U^n_i + U^n_{i+1}}{h^2} \\
 u_{tt}(x_i, t_n) &\approx \frac{U^{n+1}_i - 2U^n_i + U^{n-1}_i}{k^2}.
\end{align*}
\]

Here \(k \) and \(h = \frac{1}{N+1} \) are the step sizes in time and space (respectively) and \(U^n_i \) approximates the solution \(u(x_i, t_n) \) where \(t_n = nk \) and \(x_i = ih, \ n = 0, 1, \ldots, \ i = 0, 1, \ldots, N \). Make sure that you are explicit about boundary conditions and the initial two steps \((U^0 \text{ and } U^1) \) for this discretization.

(b) Estimate the local truncation error of the scheme.

(c) Derive a Courant condition for stability in time for the scheme of Part (a).

Problem 5. Let \(\Omega \) be a domain in \(\mathbb{R}^2 \) and \((\cdot, \cdot)\) denote the inner product in \(L^2(\Omega) \). Let \(A(\cdot, \cdot) \) be a (nonsymmetric) bounded bilinear form on \(H^1_0(\Omega) \times H^1_0(\Omega) \) satisfying the Gårding inequality:

\[
\|w\|_{H^1(\Omega)}^2 - c_0\|w\|_{L^2(\Omega)}^2 \leq c_1 A(w, w) \quad \text{for all } w \in H^1_0(\Omega)
\]

(\(c_0, c_1 \) are positive constants). For \(g \in L^2(\Omega) \), assume that there is a unique \(v \in H^1_0(\Omega) \) satisfying

\[
A(\phi, v) = (\phi, g) \quad \text{for all } \phi \in H^1_0(\Omega).
\]

Assume further that the above problem is \(H^2 \)-regular, i.e., \(v \in H^2(\Omega) \) and satisfies

\[
\|v\|_{H^2(\Omega)} \leq c\|g\|_{L^2(\Omega)}.
\]

(a) Let \(S_h \) be a sequence of finite element spaces contained in \(H^1_0(\Omega) \) with approximation parameter \(h \in (0, 1) \). Given \(w \in H^1_0(\Omega) \), suppose that \(\theta \in S_h \) solves

\[
A(\theta, \chi) = A(w, \chi) \quad \text{for all } \chi \in S_h.
\]

Show that

\[
\|w - \theta\|_{L^2(\Omega)} \leq C h \|w - \theta\|_{H^1(\Omega)}.
\]

(b) Use (5.1) and (5.2) to show that there is an \(h_0 > 0 \) such that if \(h \leq h_0 \),

\[
\|w - \theta\|_1^2 \leq CA(w - \theta, w - \theta).
\]

Taking \(w = 0 \) above shows that for \(h \leq h_0 \), \(\eta = 0 \) is the only solution \(\eta \in S_h \) satisfying

\[
A(\eta, \chi) = 0 \quad \text{for all } \chi \in S_h.
\]

(c) Use (b) above to show that for \(h \leq h_0 \) there exists a unique solution \(u_h \in S_h \) to

\[
A(u_h, \chi) = (f, \chi) \quad \text{for all } \chi \in S_h,
\]

i.e., the finite element approximation exists and is unique.