Negative eigenvalues of two-dimensional Schrödinger operators

Alexander Grigoryan
University of Bielefeld, 33501 Bielefeld, Germany
grigor@math.uni-bielefeld.de

Given a non-negative $L_{l o c}^{1}$ function $V(x)$ on \mathbb{R}^{n}, consider the Schrödinger operator $H_{V}=-\Delta-V$ where $\Delta=\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}$ is the Laplace operator. More precisely, H_{V} is defined as a form sum of $-\Delta$ and $-V$, so that, under certain assumptions about V, the operator H_{V} is self-adjoint in $L^{2}\left(\mathbb{R}^{n}\right)$.

Denote by $\operatorname{Neg}(V)$ the number of non-positive eigenvalues of H_{V} (counted with multiplicity), assuming that its spectrum in $(-\infty, 0]$ is discrete. For example, the latter is the case when $V(x) \rightarrow 0$ as $x \rightarrow \infty$. We are are interested in obtaining estimates of $\operatorname{Neg}(V)$ in terms of the potential V in the case $n=2$.

For the operator H_{V} in \mathbb{R}^{n} with $n \geq 3$ a celebrated inequality of Cwikel-Lieb-Rozenblum says that

$$
\begin{equation*}
\operatorname{Neg}(V) \leq C_{n} \int_{\mathbb{R}^{n}} V(x)^{n / 2} d x \tag{1}
\end{equation*}
$$

For $n=2$ this inequality is not valid. Moreover, no weighted L^{1}-norm of V can provide an upper bound for $\operatorname{Neg}(V)$. In fact, in the case $n=2$ instead of the upper bounds, the lower bound in (1) is true.

The main result is the estimate (2) below that was obtained jointly with N.Nadirashvili. For any $n \in \mathbb{Z}$, set

$$
U_{n}=\left\{\begin{array}{l}
\left\{e^{2^{n-1}}<|x|<e^{2^{n}}\right\}, \quad n>0 \\
\left\{e^{-1}<|x|<e\right\}, \quad n=0, \\
\left\{e^{-2^{|n|}}<|x|<e^{-2^{2 n \mid-1}}\right\}, \quad n<0
\end{array}\right.
$$

Define for any $n \in \mathbb{Z}$ the following quantities:

$$
A_{n}=\int_{U_{n}} V(x)(1+|\ln | x| |) d x, \quad B_{n}=\left(\int_{\left\{e^{n}<|x|<e^{n+1}\right\}} V^{p}(x)|x|^{2(p-1)} d x\right)^{1 / p}
$$

where $p>1$ is fixed. Then the following estimate holds

$$
\begin{equation*}
\operatorname{Neg}(V) \leq 1+C \sum_{\left\{n \in \mathbb{Z}: A_{n}>c\right\}} \sqrt{A_{n}}+C \sum_{\left\{n \in \mathbb{Z}: B_{n}>c\right\}} B_{n}, \tag{2}
\end{equation*}
$$

where C, c are positive constants depending only on p.
For example, (2) implies the finiteness of $\operatorname{Neg}(V)$ provided V is locally bounded and $V(x)=o\left(\frac{1}{|x|^{2} \ln ^{2}|x|}\right)$ as $x \rightarrow \infty$, which cannot be seen by any previously known method.

