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It is known that under certain assumptions for nonlinearities the following
coupled nonlinear hyperbolic equations
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have traveling-wave solutions.
We realize the McKean’s program [1] for the Kolmogorov-Petrovskii-Piskunov

equation in this hyperbolic case.
A branching random motion on a line, with abrupt changes of direction, is

studied. The branching mechanism, being independent of random motion, and
intensities of reverses are defined by a particle’s current direction. A solution of
a certain hyperbolic system of coupled non-linear equations (Kolmogorov type
backward equation) have a so-called McKean representation via such processes.
Commonly this system possesses travelling-wave solutions. The convergence of
solutions with Heaviside terminal data to the travelling waves is discussed.

The Feynman-Kac formula plays a key role, [2].
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