Homogenization of the elliptic Dirichlet problem: operator error estimates

T.A. SUSLINA

St. Petersburg State University, St. Petersburg, Russia suslina@list.ru

Let $\mathcal{O} \subset \mathbb{R}^d$ be a bounded domain of class $C^{1,1}$. In $L_2(\mathcal{O}; \mathbb{C}^n)$, we consider a matrix elliptic differential operator $A_{\varepsilon} = b(\mathbf{D})^* g(\mathbf{x}/\varepsilon) b(\mathbf{D})$ with the Dirichlet boundary condition. We assume that an $(m \times m)$ -matrix-valued function $g(\mathbf{x})$ is bounded, uniformly positive definite and periodic with respect to some lattice Γ . The elementary cell of Γ is denoted by Ω . Next, $b(\mathbf{D}) = \sum_{j=1}^d b_j D_j$ is an $(m \times n)$ -matrix first order differential operator $(b_j \text{ are constant matrices})$. It is assumed that $m \ge n$ and the symbol $b(\boldsymbol{\xi}) = \sum_{j=1}^d b_j \xi_j$ has maximal rank, i. e., rank $b(\boldsymbol{\xi}) = n$ for $0 \neq \boldsymbol{\xi} \in \mathbb{R}^d$. The simplest example is $A_{\varepsilon} = -\text{div} g(\mathbf{x}/\varepsilon)\nabla$.

We study the behavior of the solution \mathbf{u}_{ε} of the Dirichlet problem $A_{\varepsilon}\mathbf{u}_{\varepsilon} = \mathbf{F}$ in \mathcal{O} , $\mathbf{u}_{\varepsilon}|_{\partial\mathcal{O}} = 0$, where $\mathbf{F} \in L_2(\mathcal{O}; \mathbb{C}^n)$. It turns out that \mathbf{u}_{ε} converges in $L_2(\mathcal{O}; \mathbb{C}^n)$ to \mathbf{u}_0 , as $\varepsilon \to 0$. Here \mathbf{u}_0 is the solution of the "homogenized" Dirichlet problem $A^0\mathbf{u}_0 = \mathbf{F}$ in \mathcal{O} , $\mathbf{u}_0|_{\partial\mathcal{O}} = 0$. The effective operator A^0 is given by the expression $A^0 = b(\mathbf{D})^*g^0b(\mathbf{D})$ with the Dirichlet boundary condition. The effective matrix g^0 is a constant positive $(m \times m)$ -matrix defined as follows. Denote by $\Lambda(\mathbf{x})$ the $(n \times m)$ -matrix-valued periodic solution of the equation $b(\mathbf{D})^*g(\mathbf{x})(b(\mathbf{D})\Lambda(\mathbf{x}) + \mathbf{1}_m) = 0$ such that $\int_{\Omega} \Lambda(\mathbf{x}) d\mathbf{x} = 0$. Then $g^0 = |\Omega|^{-1} \int_{\Omega} g(\mathbf{x})(b(\mathbf{D})\Lambda(\mathbf{x}) + \mathbf{1}_m) d\mathbf{x}$.

Theorem 1. (see [2]) We have the following sharp order error estimate:

$$\|\mathbf{u}_{\varepsilon} - \mathbf{u}_0\|_{L_2(\mathcal{O};\mathbb{C}^n)} \le C\varepsilon \|\mathbf{F}\|_{L_2(\mathcal{O};\mathbb{C}^n)}$$

Now we give approximation of \mathbf{u}_{ε} in the Sobolev space $H^1(\mathcal{O}; \mathbb{C}^n)$. For this, the first order corrector must be taken into account.

Theorem 2. (see [1]) 1) Let $\Lambda \in L_{\infty}$, and denote $\Lambda^{\varepsilon}(\mathbf{x}) = \Lambda(\varepsilon^{-1}\mathbf{x})$. Then

 $\|\mathbf{u}_{\varepsilon}-\mathbf{u}_{0}-\varepsilon\Lambda^{\varepsilon}b(\mathbf{D})\mathbf{u}_{0}\|_{H^{1}(\mathcal{O};\mathbb{C}^{n})}\leq C\varepsilon^{1/2}\|\mathbf{F}\|_{L_{2}(\mathcal{O};\mathbb{C}^{n})}.$

2) In the general case, we have

$$\|\mathbf{u}_{\varepsilon} - \mathbf{u}_0 - \varepsilon \Lambda^{\varepsilon} b(\mathbf{D})(S_{\varepsilon} \widetilde{\mathbf{u}}_0)\|_{H^1(\mathcal{O};\mathbb{C}^n)} \le C \varepsilon^{1/2} \|\mathbf{F}\|_{L_2(\mathcal{O};\mathbb{C}^n)}.$$

Here $\widetilde{\mathbf{u}}_0 = P_{\mathcal{O}}\mathbf{u}_0$ and $P_{\mathcal{O}}: H^2(\mathcal{O}; \mathbb{C}^n) \to H^2(\mathbb{R}^d; \mathbb{C}^n)$ is a continuous extension operator, S_{ε} is the smoothing operator $(S_{\varepsilon}\mathbf{u})(\mathbf{x}) = |\Omega|^{-1} \int_{\Omega} \mathbf{u}(\mathbf{x} - \varepsilon \mathbf{z}) d\mathbf{z}$.

References

- M. A. Pakhnin, T. A. Suslina, Operator error estimates for homogenization of the Dirichlet problem in a bounded domain, Preprint, 2012. Available at http://arxiv.org/abs/1201.2140.
- [2] T. A. Suslina, Homogenization of the elliptic Dirichlet problem: operator error estimates in L₂, Preprint, 2012. Available at http://arxiv.org/abs/1201.2286.