Example of equations with nonlinearity of type min $[\mathrm{u}, \mathrm{v}]$

N. Vvedenskaya
Institute for Information Transmission Problems, Moscow, Russia
ndv@iitp.ru
Y.M. Suhov
IITP, Cambridge University, Universidade de Sao Paulo yms@statslab.cam.ac.uk

This paper considers a boundary-value problem for a nonlinear system of equations that are derived from a trading process model [1].

Let $u(x . t), v(x, t), 0<x<1, t>0$, satisfy a system

$$
\begin{align*}
\frac{\partial u(x, t)}{\partial t} & =-a_{u} \frac{\partial u(x, t)}{\partial x} \quad-b_{u} u(x, t)-c \min [u(x, t), v(x, t)] \tag{1}\\
\frac{\partial v(x, t)}{\partial t} & =a_{v} \frac{\partial v(x, t)}{\partial x}-b_{v} v(x, t)-c \min [u(x, t), v(x, t)] \\
\frac{\partial u(0, t)}{\partial t} & =d_{u}-a_{u} u(0, t)-b_{u} u(0, t)-c \min [u(0, t), v(0, t)] \tag{2}\\
\frac{\partial v(1, t)}{\partial t} & =d_{v}-a_{v} v(1, t)-b_{v} v(1, t)-c \min [u(1, t), v(1, t)] \tag{3}\\
& u(x, 0)=u_{0}(x) \geq 0, \quad v(x, 0)=v_{0}(x) \geq 0 \tag{4}
\end{align*}
$$

Here $a_{u / v}, b_{u / v}, c, d_{u / v}$ are positive.
Theorem 1 For any initial data $u_{0}(x), v_{0}(x)$ for all $t>0$ there exists a unique solution to (1)-(4). As $t \rightarrow \infty$ a solution approaches a fixed point which is the unique solution to a system

$$
\begin{align*}
-a_{u} \frac{\mathrm{~d} u(x, t)}{\mathrm{d} x}-b_{u} u(x, t)-c \min [u(x, t), v(x, t)] & =0, \\
a_{v} \frac{\mathrm{~d} v(x, t)}{\mathrm{d} x}-b_{v} v(x, t)-c \min [u(x, t), v(x, t)] & =0, \tag{5}\\
d_{u}-a_{u} u(0, t)-b_{u} u(0, t)-c \min [u(0, t), v(0, t)] & =0, \tag{6}\\
d_{v}-a_{v} v(1, t)-b_{v} v(1, t)-c \min [u(1, t), v(1, t)] & =0 . \tag{7}
\end{align*}
$$

Remark that the type of boundary conditions (2), (3) and (6), (7) depends on sign of $u-v$, that makes not evident the uniqueness of solution to (5)-(7).

The first author was supported by grant RFBR 11-01-00485a.

References

[1] N.D. Vvedenskaya, Y. Suhov, V. Belitsky, A non-linear model of limit order book dynamics, http://arXiv:1102.1104 (2011).

