On the Gauss problem with Riesz potential

WOLFGANG L. WENDLAND Universität Stuttgart, Germany wendland@mathematik.uni-stuttgart.de

This is a lecture on joint work with H. Harbrecht (U. Basel, Switzerland), G. Of (TU. Graz, Austria) and N. Zorii (Nat. Academy Sci. Kiev, Ukraine).

In \mathbb{R}^n , $n \ge 2$, we study the constructive and numerical solution of minimizing the energy relative to the Riesz kernel $|\mathbf{x} - \mathbf{y}|^{\alpha - n}$, where $1 < \alpha < n$, for the Gauss variational problem, considered for finitely many compact, mutually disjoint, boundaryless (n - 1)-dimensional Lipschitz manifolds Γ_{ℓ} , $\ell \in L$, each Γ_{ℓ} being charged with Borel measures with the sign $\alpha_{\ell} = \pm 1$ prescribed. We show that the Gauss variational problem over an affine cone of Borel measures can alternatively be formulated as a minimum problem over an affine cone of surface distributions belonging to the Sobolev–Slobodetski space $H^{-\varepsilon/2}(\Gamma)$, where $\varepsilon := \alpha - 1$ and $\Gamma := \bigcup_{\ell \in L} \Gamma_{\ell}$. This allows the application of simple layer boundary integral operators on Γ and, hence, a penalty approximation. A corresponding numerical method is based on the Galerkin–Bubnov discretization with piecewise constant boundary elements. For n = 3 and $\alpha = 2$, multipole approximation and in the case $1 < \alpha < 3 = n$ wavelet matrix compression is applied to sparsify the system matrix. Numerical results are presented to illustrate the approach.

References

- G. Of, W.L. Wendland and N. Zorii: On the numerical solution of minimal energy problems. Complex Variables and Elliptic Equations 55 (2010) 991– 1012.
- [2] H. Harbrecht, W.L. Wendland and N. Zorii: On Riesz minimal energy problems. Preprint Series Stuttgart Research Centre for Simulation Technology (SRC Sim Tech) Issue No. 2010–80.