MATH 304
Linear Algebra

Lecture 13:
Review for Test 1.
Topics for Test 1

Part I: Elementary linear algebra (Leon 1.1–1.5, 2.1–2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.
- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.
Topics for Test 1

Part II: Abstract linear algebra (Leon 3.1–3.4, 3.6)

• Vector spaces (vectors, matrices, polynomials, functional spaces).
• Subspaces. Nullspace, column space, and row space of a matrix.
• Span, spanning set. Linear independence.
• Basis and dimension.
• Rank and nullity of a matrix.
Sample problems for Test 1

Problem 1 (15 pts.) Find a quadratic polynomial $p(x)$ such that $p(1) = 1$, $p(2) = 3$, and $p(3) = 7$.

Problem 2 (25 pts.) Let $A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$.

(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A^{-1}.
Problem 3 (20 pts.) Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

(i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $xyz = 0$.
(ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $x + y + z = 0$.
(iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 + z^2 = 0$.
(iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 - z^2 = 0$.

Problem 4 (30 pts.) Let

$$
B = \begin{pmatrix}
0 & -1 & 4 & 1 \\
1 & 1 & 2 & -1 \\
-3 & 0 & -1 & 0 \\
2 & -1 & 0 & 1
\end{pmatrix}.
$$

(i) Find the rank and the nullity of the matrix B.
(ii) Find a basis for the row space of B, then extend this basis to a basis for \mathbb{R}^4.
(iii) Find a basis for the nullspace of B.

Bonus Problem 5 (15 pts.) Show that the functions \(f_1(x) = x, \ f_2(x) = xe^x, \) and \(f_3(x) = e^{-x} \) are linearly independent in the vector space \(C^\infty(\mathbb{R}) \).

Bonus Problem 6 (15 pts.) Let \(V \) be a finite-dimensional vector space and \(V_0 \) be a proper subspace of \(V \) (where proper means that \(V_0 \neq V \)). Prove that \(\dim V_0 < \dim V \).
Problem 1. Find a quadratic polynomial $p(x)$ such that $p(1) = 1$, $p(2) = 3$, and $p(3) = 7$.

Let $p(x) = ax^2 + bx + c$. Then $p(1) = a + b + c$, $p(2) = 4a + 2b + c$, and $p(3) = 9a + 3b + c$. The coefficients a, b, and c have to be chosen so that

$$\begin{cases}
a + b + c = 1, \\
4a + 2b + c = 3, \\
9a + 3b + c = 7.
\end{cases}$$

We solve this system of linear equations using elementary operations:

$$\begin{align*}
\begin{cases}
a + b + c = 1 \\
4a + 2b + c = 3
\end{cases} & \iff \\
\begin{cases}
a + b + c = 1 \\
3a + b = 2
\end{cases} \\
\begin{cases}
a + b + c = 1 \\
9a + 3b + c = 7
\end{cases} & \iff \\
\begin{cases}
3a + b = 2 \\
9a + 3b + c = 7
\end{cases}
\end{align*}$$
Thus the desired polynomial is \(p(x) = x^2 - x + 1 \).
Problem 2. Let \(A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix} \).

(i) Evaluate the determinant of the matrix \(A \).

Subtract the 4th row of \(A \) from the 3rd row:

\[
\begin{vmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 0 & 0 & -1 & 0 \\ 2 & 0 & 0 & 1 \end{vmatrix}.
\]
Expand the determinant by the 3rd row:

\[
\begin{vmatrix}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
0 & 0 & -1 & 0 \\
2 & 0 & 0 & 1 \\
\end{vmatrix} = (-1) \begin{vmatrix}
1 & -2 & 1 \\
2 & 3 & 0 \\
2 & 0 & 1 \\
\end{vmatrix}.
\]

Expand the determinant by the 3rd column:

\[
(-1) \begin{vmatrix}
1 & -2 & 1 \\
2 & 3 & 0 \\
2 & 0 & 1 \\
\end{vmatrix} = (-1) \left(\begin{vmatrix}
2 & 3 \\
2 & 0 \\
\end{vmatrix} + \begin{vmatrix}
1 & -2 \\
2 & 3 \\
\end{vmatrix} \right) = -1.
\]
Problem 2. Let \(A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix} \).

(ii) Find the inverse matrix \(A^{-1} \).

First we merge the matrix \(A \) with the identity matrix into one \(4 \times 8 \) matrix

\[
(A | I) = \begin{pmatrix} 1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}.
\]

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix.
Subtract 2 times the 1st row from the 2nd row:

\[
\begin{pmatrix}
1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & | & -2 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & | & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1
\end{pmatrix}
\]

Subtract 2 times the 1st row from the 3rd row:

\[
\begin{pmatrix}
1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & | & -2 & 1 & 0 & 0 \\
0 & 4 & -9 & -1 & | & -2 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1
\end{pmatrix}
\]

Subtract 2 times the 1st row from the 4th row:

\[
\begin{pmatrix}
1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & | & -2 & 1 & 0 & 0 \\
0 & 4 & -9 & -1 & | & -2 & 0 & 1 & 0 \\
0 & 4 & -8 & -1 & | & -2 & 0 & 0 & 1
\end{pmatrix}
\]
Subtract 2 times the 4th row from the 2nd row:

$$
\begin{pmatrix}
1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & | & 2 & 1 & 0 & -2 \\
0 & 4 & -9 & -1 & | & -2 & 0 & 1 & 0 \\
0 & 4 & -8 & -1 & | & -2 & 0 & 0 & 1 \\
\end{pmatrix}
$$

Subtract the 4th row from the 3rd row:

$$
\begin{pmatrix}
1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & | & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & | & 0 & 0 & 1 & -1 \\
0 & 4 & -8 & -1 & | & -2 & 0 & 0 & 1 \\
\end{pmatrix}
$$

Add 4 times the 2nd row to the 4th row:

$$
\begin{pmatrix}
1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & | & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & | & 0 & 0 & 1 & -1 \\
0 & 0 & 32 & -1 & | & 6 & 4 & 0 & -7 \\
\end{pmatrix}
$$
Add 32 times the 3rd row to the 4th row:

\[
\begin{pmatrix}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{pmatrix}
\]

Add 10 times the 3rd row to the 2nd row:

\[
\begin{pmatrix}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{pmatrix}
\]

Add the 4th row to the 1st row:

\[
\begin{pmatrix}
1 & -2 & 4 & 0 & 7 & 4 & 32 & -39 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{pmatrix}
\]
Add 4 times the 3rd row to the 1st row:

$$
\begin{bmatrix}
1 & -2 & 0 & 0 & 7 & 4 & 36 & -43 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39 \\
\end{bmatrix}
$$

Subtract 2 times the 2nd row from the 1st row:

$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39 \\
\end{bmatrix}
$$

Multiply the 2nd, the 3rd, and the 4th rows by -1:

$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39 \\
\end{bmatrix}
$$
Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

$$A^{-1} = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 2 & 16 & -19 \\ -2 & -1 & -10 & 12 \\ 0 & 0 & -1 & 1 \\ -6 & -4 & -32 & 39 \end{pmatrix}. $$
Problem 2. Let $A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$.

(i) Evaluate the determinant of the matrix A.

Alternative solution: We have transformed A into the identity matrix using elementary row operations. These included no row exchanges and three row multiplications, each time by -1.

It follows that $\det I = (-1)^3 \det A$.

$\implies \det A = -\det I = -1$.
Problem 3. Determine which of the following subsets of \(\mathbb{R}^3 \) are subspaces. Briefly explain.

A subset of \(\mathbb{R}^3 \) is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.

(i) The set \(S_1 \) of vectors \((x, y, z) \in \mathbb{R}^3\) such that \(xyz = 0\).

\[(0, 0, 0) \in S_1 \implies S_1 \text{ is not empty}.
\]

\[xyz = 0 \implies (rx)(ry)(rz) = r^3xyz = 0.
\]

That is, \(\mathbf{v} = (x, y, z) \in S_1 \implies r\mathbf{v} = (rx, ry, rz) \in S_1.\)

Hence \(S_1 \) is closed under scalar multiplication.

However \(S_1 \) is not closed under addition.

Counterexample: \((1, 1, 0) + (0, 0, 1) = (1, 1, 1)\).
Problem 3. Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

A subset of \mathbb{R}^3 is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.

(ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $x + y + z = 0$.

$(0, 0, 0) \in S_2 \implies S_2$ is not empty.

$x + y + z = 0 \implies rx + ry + rz = r(x + y + z) = 0$. Hence S_2 is closed under scalar multiplication.

$x + y + z = x' + y' + z' = 0 \implies (x + x') + (y + y') + (z + z') = (x + y + z) + (x' + y' + z') = 0$.
That is, $v = (x, y, z), \ v' = (x', y', z') \in S_2 \implies v + v' = (x + x', y + y', z + z') \in S_2$.

Hence S_2 is closed under addition.
(iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 + z^2 = 0$.

$y^2 + z^2 = 0 \iff y = z = 0$.

S_3 is a nonempty set closed under addition and scalar multiplication.

(iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 - z^2 = 0$.

S_4 is a nonempty set closed under scalar multiplication. However S_4 is not closed under addition.

Counterexample: $(0, 1, 1) + (0, 1, -1) = (0, 2, 0)$.
Problem 4. Let \(B = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix} \).

(i) Find the rank and the nullity of the matrix \(B \).

The rank (= dimension of the row space) and the nullity (= dimension of the nullspace) of a matrix are preserved under elementary row operations. We apply such operations to convert the matrix \(B \) into row echelon form.

Interchange the 1st row with the 2nd row:

\[
\begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}
\]
Add 3 times the 1st row to the 3rd row, then subtract 2 times the 1st row from the 4th row:

\[
\begin{pmatrix}
1 & 1 & 2 & -1 \\
0 & -1 & 4 & 1 \\
0 & 3 & 5 & -3 \\
2 & -1 & 0 & 1
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 1 & 2 & -1 \\
0 & -1 & 4 & 1 \\
0 & 3 & 5 & -3 \\
2 & -1 & 0 & 1
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 1 & 2 & -1 \\
0 & -1 & 4 & 1 \\
0 & 3 & 5 & -3 \\
3 & -1 & 0 & 1
\end{pmatrix}
\]

Multiply the 2nd row by -1:

\[
\begin{pmatrix}
1 & 1 & 2 & -1 \\
0 & -1 & 4 & 1 \\
0 & 3 & 5 & -3 \\
2 & -1 & 0 & 1
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 3 & 5 & -3 \\
0 & -3 & -4 & 3
\end{pmatrix}
\]

Add the 4th row to the 3rd row:

\[
\begin{pmatrix}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 3 & 5 & -3 \\
2 & -1 & 0 & 1
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & -3 & -4 & 3
\end{pmatrix}
\]
Add 3 times the 2nd row to the 4th row:

\[
\begin{pmatrix}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & -16 & 0
\end{pmatrix}
\]

Add 16 times the 3rd row to the 4th row:

\[
\begin{pmatrix}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

Now that the matrix is in row echelon form, its rank equals the number of nonzero rows, which is 3. Since
\[
(\text{rank of } B) + (\text{nullity of } B) = (\text{the number of columns of } B) = 4,
\]
it follows that the nullity of \(B \) equals 1.
Problem 4. Let \(B = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix} \).

(ii) Find a basis for the row space of \(B \), then extend this basis to a basis for \(\mathbb{R}^4 \).

The row space of a matrix is invariant under elementary row operations. Therefore the row space of the matrix \(B \) is the same as the row space of its row echelon form:

\[
\begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\]

The nonzero rows of the latter matrix are linearly independent so that they form a basis for its row space:
\[\mathbf{v}_1 = (1, 1, 2, -1), \quad \mathbf{v}_2 = (0, 1, -4, -1), \quad \mathbf{v}_3 = (0, 0, 1, 0). \]

To extend the basis \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) to a basis for \(\mathbb{R}^4 \), we need a vector \(\mathbf{v}_4 \in \mathbb{R}^4 \) that is not a linear combination of \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \).

It is known that at least one of the vectors \(\mathbf{e}_1 = (1, 0, 0, 0), \mathbf{e}_2 = (0, 1, 0, 0), \mathbf{e}_3 = (0, 0, 1, 0), \) and \(\mathbf{e}_4 = (0, 0, 0, 1) \) can be chosen as \(\mathbf{v}_4 \).

In particular, the vectors \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{e}_4 \) form a basis for \(\mathbb{R}^4 \). This follows from the fact that the \(4 \times 4 \) matrix whose rows are these vectors is not singular:

\[
\begin{vmatrix}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{vmatrix} = 1 \neq 0.
\]
Problem 4. Let \(B = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix} \).

(iii) Find a basis for the nullspace of \(B \).

The nullspace of \(B \) is the solution set of the system of linear homogeneous equations with \(B \) as the coefficient matrix. To solve the system, we convert \(B \) to reduced row echelon form:

\[
\begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]

\(\implies x_1 = x_2 - x_4 \quad x_3 = 0 \)

General solution: \((x_1, x_2, x_3, x_4) = (0, t, 0, t) = t(0, 1, 0, 1) \).

Thus the vector \((0, 1, 0, 1) \) forms a basis for the nullspace of \(B \).
Bonus Problem 5. Show that the functions $f_1(x) = x$, $f_2(x) = x e^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^\infty(\mathbb{R})$.

The functions f_1, f_2, f_3 are linearly independent whenever the Wronskian $W[f_1, f_2, f_3]$ is not identically zero.

$$W[f_1, f_2, f_3](x) = \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ f_1'(x) & f_2'(x) & f_3'(x) \\ f_1''(x) & f_2''(x) & f_3''(x) \end{vmatrix} = \begin{vmatrix} x & xe^x & e^{-x} \\ 1 & e^x + xe^x & -e^{-x} \\ 0 & 2e^x + xe^x & e^{-x} \end{vmatrix}$$

$$= e^{-x} \begin{vmatrix} x & xe^x & 1 \\ 1 & e^x + xe^x & -1 \\ 0 & 2e^x + xe^x & 1 \end{vmatrix} = x \begin{vmatrix} 1+x & -1 \\ 2+x & 1 \end{vmatrix} = x(2x+3) + 2 = 2x^2 + 3x + 2.$$
Bonus Problem 5. Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^\infty(\mathbb{R})$.

Alternative solution: Suppose that $af_1(x) + bf_2(x) + cf_3(x) = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a = b = c = 0$.

Let us differentiate this identity:

$$ax + bxe^x + ce^{-x} = 0,$$

$$a + be^x + bxe^x - ce^{-x} = 0,$$

$$2be^x + bxe^x + ce^{-x} = 0,$$

$$3be^x + bxe^x - ce^{-x} = 0,$$

$$4be^x + bxe^x + ce^{-x} = 0.$$

(\text{the 5th identity})−(\text{the 3rd identity}):

\[2be^x = 0 \implies b = 0. \]

Substitute $b = 0$ in the 3rd identity:

\[ce^{-x} = 0 \implies c = 0. \]

Substitute $b = c = 0$ in the 2nd identity:

\[a = 0. \]
Bonus Problem 5. Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^\infty(\mathbb{R})$.

Alternative solution: Suppose that $ax + bxe^x + ce^{-x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a = b = c = 0$.

For any $x \neq 0$ divide both sides of the identity by xe^x:
$$ae^{-x} + b + cx^{-1}e^{-2x} = 0.$$
The left-hand side approaches b as $x \to +\infty$. $\implies b = 0$

Now $ax + ce^{-x} = 0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x:
$$a + cx^{-1}e^{-x} = 0.$$
The left-hand side approaches a as $x \to +\infty$. $\implies a = 0$

Now $ce^{-x} = 0 \implies c = 0$.
Bonus Problem 6. Let V be a finite-dimensional vector space and V_0 be a proper subspace of V (where proper means that $V_0 \neq V$). Prove that $\dim V_0 < \dim V$.

Any vector space has a basis. Let v_1, v_2, \ldots, v_k be a basis for V_0.

Vectors v_1, v_2, \ldots, v_k are linearly independent in V since they are linearly independent in V_0. Therefore we can extend this collection of vectors to a basis for V by adding some vectors w_1, \ldots, w_m. As $V_0 \neq V$, we do need to add some vectors, i.e., $m \geq 1$.

Thus $\dim V_0 = k$ and $\dim V = k + m > k$.