Algorithms and Functions

Algorithm: a finite set of precise instructions for performing a computation or for solving a problem.

It is the black-box with three properties:

- **Definiteness**: each step is defined precisely
- **Finiteness**: end after a finite many steps
- **Generality**: deal with all problems of the desired form, not just for some particular input values.

Try to do the following job:

1. Find the maximal element in a finite sequence
 - Way 1: Compare two each time, and keep the current “leader”.
 Let \(\max := a_1 \). For \(i = 2 \) to \(n \), if \(\max < a_i \), then \(\max := a_i \)

2. Locate an element in a given list
 - Way 1: linear search, or sequential search – Compare the desired item with elements in the list one by one.
 - Way 2: Binary search: Order the list first (like a dictionary), then check the middle, go to first half, or the second half according to \(x < a_{\text{middle}} \), or \(x > a_{\text{middle}} \).
 Important idea: PUSH THINGS INTO A SIMILAR, BUT SMALLER PROBLEM!

3. Sort the given data in order
 - Way 1. Bubble sort: push the largest element to the end, then work with a shorter list.
 Algorithm: For \(i = 1 \) to \(n - 1 \), if \(a_i > a_{i+1} \), interchange \(a_i \) with \(a_{i+1} \). Then repeat for the remaining \(n - 1 \) numbers.
 - Way 2. Insertion Sort: Read the number and write them in order one-by-one.
 Algorithm: Begin with \(a_1 \). For \(j = 2 \) to \(n \), compare \(a_j \) with the current list, and insert it in the right position.
 - Way 3. Merge Sort: Split the list into two, sort each half, then merge.

Which way is better? How to compare two algorithms? — Compute how “expensive” they are, in terms of time or space spent. → **Complexity**.

Count the number of “major operations” used. It depends on how you write the algorithm.

For examples,
- **Find the max**: \(n - 1 \) comparisons.
- **Linear Search**: in worst case, \(n - 1 \) comparisons.
- **Binary search**: \(1 + f(n/2) \) Later, we will see it is about \(\log_2 n \).
- **Bubble sort**: \((n - 1) + (n - 2) + \cdots + 1 = n(n - 1)/2 \).
- **Insertion Sort**: Worst case \(1 + 2 + \cdots + (n - 1) \)
- **Merge Sort**: \(2f(n/2) + n \). Later, we will see it is about \(n \log(n) \)

Q: with two complexity functions, how to compare them?
Definition 1. We say that f is of $O(g)$ if there are constant C and K such that

$$|f(x)| \leq C|g(x)|$$

whenever $x > K$.

Read: f is big-O of g. g dominates f, f is dominated by g.

Variation of notations:

1. We say that g is of $\Omega(g)$ if f is $O(g)$. That is, if there are constant C and K such that

$$|f(x)| \leq C|g(x)|$$

whenever $x > K$.

2. We say that f is $\Theta(g)$ if f is $O(g)$ and $\Omega(g)$. That is, if there are constant C_1, C_2, and K such that

$$C_2|g(x)| \leq |f(x)| \leq C_1|g(x)|$$

whenever $x > K$.

Examples:

1. $f(x) = x^2 + 2x + 4$, $g(x) = x^2$.
2. $f(x) = 4x^2 - 8x$, $g(x) = x^2/2$.