A basic problem in Combinatorics is to count functions between two sets. Let \(N \) and \(X \) be finite sets with \(|N| = n\) and \(|X| = x\). We wish to count the number of functions \(f : N \to X \) subject to certain restrictions. There will be three restrictions on the functions themselves and four restrictions on when we consider two functions to be the same. This gives a total of twelve counting problems, and their solution is called the *Twelvefold way*.

The three restrictions on the functions \(f : N \to X \) are the following:

1. \(f \) is arbitrary (no restriction).
2. \(f \) is injective, (one-to-one). That is, \(f(a) = f(b) \) implies \(a = b \).
3. \(f \) is surjection, (onto). That is, for any \(x \in X \), there are some \(a \in N \) such that \(f(a) = x \).

The four interpretations as to when two functions are the same come about from regarding the elements of \(N \) and \(X \) as “distinguishable” or “indistinguishable”. Think of \(N \) as a set of balls and \(X \) as a set of boxes. A function \(f : N \to X \) consists of placing each ball into some box. If we can tell the balls apart, then the elements of \(N \) are called *distinguishable*, otherwise *indistinguishable*. Similarly, if we can tell the boxes apart, then the elements of \(X \) are called *distinguishable*, otherwise *indistinguishable*. For example, suppose \(N = \{1, 2, 3\} \), and \(X = \{a, b, c, d\} \), and define functions \(f, g, h, i : N \to X \) by

\[
\begin{align*}
f(1) &= f(2) = a, & f(3) &= b, \\
g(1) &= g(3) = a, & g(2) &= b, \\
h(1) &= h(2) = b, & h(3) &= d, \\
i(2) &= i(3) = b, & i(1) &= c.
\end{align*}
\]

If the elements of both \(N \) and \(X \) are distinguishable, the functions have the pictures shown in Figure 1. All four pictures are different, and the four functions are different.
Now suppose that the elements of N (but not X) are indistinguishable. This corresponds to erasing the labels on the balls. The pictures for f and g both become the following one. So now f and g are equivalent. However, f, h and i remain inequivalent.

If the elements of X (but not N) are indistinguishable, then we erase the labels of the boxes. Thus f and h both have the picture shown in figure 3. Hence f and h are equivalent, but f, g, i are inequivalent.

If the elements of both N and X are indistinguishable, then all four functions have the picture shown in Figure 4, so all four are equivalent.
Figure 4: All four are equivalent when both N and X are indistinguishable.

In this project, you are required to compute the number of functions in each case.

1. Compute the entries in the following table for $N = \{1, 2, 3\}$ and $X = \{a, b, c, d\}$.

2. Compute the entries in the following table for $N = \{1, 2, 3, 4\}$ and $X = \{a, b, c\}$.

3. Derive a formula for each entry in the following table. Note that in some cases, the answer may not have a nice closed formula.

 For each answer you get, give some explanation. You can use other research tools, such as books, papers, and websites.

<table>
<thead>
<tr>
<th>Elements of N</th>
<th>Elements of X</th>
<th>Any f</th>
<th>Injective f</th>
<th>Surjective f</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist.</td>
<td>dist.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indist.</td>
<td>dist.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist.</td>
<td>indist.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indist.</td>
<td>indist.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>