FACT FROM ADVANCED CALCULUS (Intermediate Value Theorem): If \(f : [a, b] \to \mathbb{R} \) is continuous and \(c \) is any number between \(f(a) \) and \(f(b) \), then \(c = f(x) \) for some \(x \in [a, b] \).

Definition: A **fixed point** of a function \(f : S \to S \) is a point \(p \in S \) for which \(f(p) = p \). A metric space \(S \) has the **fixed point property** (FPP) iff every continuous \(f : S \to S \) has at least one fixed point.

Theorem: Any interval \([a, b]\) with the usual metric has the fixed point property.

Example: The circle \(S = \{ x \in \mathbb{R}^2 : \| x \|_2 = 1 \} \) does not have the fixed point property. For instance the rotation \(f : S \to S \) given by \(f(s, t) = (-t, s) \) has no fixed point. Does the Cantor set have FPP?

An straightforward way to attempt to find fixed points is by iteration.

Theorem: Let \(S \) be a metric space and \(f : S \to S \) be continuous. For a given \(x_0 \in S \) define \((x_n) \) recursively by \(x_{n+1} = f(x_n), n \geq 0 \). If \(x_n \to p \) then \(p \) is a fixed point of \(f \).

Examples: Each function maps \([0, 1]\) into itself.
(a) For \(f(x) = (1 + x) / 3 \) the fixed point is \(x = 1/2 \) and \(|f(x) - 1/2| = (1/3)|x - 1/2| \) for all \(x \). The iterates converge to \(1/2 \) for any \(x_0 \in [0, 1] \).
(b) For \(f(x) = 1 - x \) the fixed point is \(x = 1/2 \) and \(|f(x) - 1/2| = |x - 1/2| \) for all \(x \). The iterates converge if \(x_0 = 1/2 \).
(c) For \(f(x) = \max\{0, 2x - 1\} \) the fixed points are \(x = 0 \) and \(1 \). Iterates decrease to zero unless \(x_0 = 1 \).

In the last examples convergence is determined by the size of the ratios \(|f(x) - f(p)| / |x - p| \).

Theorem: Let \(S \) be a compact metric space. If \(f : S \to S \) is a function with \(d(f(x), f(z)) < d(x, z) \) whenever \(x \neq z \), then \(f \) has a unique fixed point.

Example: The last result can fail without compactness. \(f(x) = x + x^{-1} \) defined a function \(f : [2, \infty) \to [2, \infty) \) with no fixed point but with \(\left| f(x) - f(z) \right| < \left| x - z \right| \) whenever \(x \neq z \).

Contraction Mapping Theorem (or Banach Fixed Point Theorem): Let \(S \) be a complete metric space and \(f : S \to S \) be a function with Lipschitz constant \(\alpha = \text{Lip}(f) < 1 \).
(a) \(f \) has a unique fixed point \(p \).
(b) For any \(x_0 \in S \) the sequence \((x_n) \) defined by \(x_{n+1} = f(x_n), n \geq 0 \), converges to \(p \), and \(d(p, x_n) \leq \frac{\alpha^n}{1 - \alpha} d(x_1, x_0) \) for all \(n \).
Examples: The last result can fail when \(\text{Lip}(f) = 1 \). \(f(s, t) = (-t, s) \) defines a function from the unit circle to itself with no fixed point but with \(\text{Lip}(f) = 1 \). The last result can fail if \(S \) is not complete. On \(S = [0,1) \), \(f(s) = (1 + s)/2 \) has Lipschitz constant \(1/2 \) but no fixed point.

PROBLEMS

Problem 11-1. Let \(S \) be a metric space and \(f : S \to S \) be a function with a fixed point \(p \).

Each part is about a sequence of iterates defined by \(x_n+1 = f(x_n), \ n \geq 0 \).

1. Assume that \(\exists r > 0 \exists \alpha \in (0,1) \) such that \(d(x, p) < r \Rightarrow d(f(x), p) \leq \alpha d(x, p) \).

Prove, say by induction, that \(d(x_0, p) < r \Rightarrow d(x_n, p) \leq \alpha^n d(x_0, p) \) for all \(n \).

Conclude that \((x_n) \) converges to \(p \).

2. Assume that \(\exists r > 0 \exists \beta \in (1, \infty) \) such that \(d(x, p) < r \Rightarrow d(f(x), p) \geq \beta d(x, p) \).

Prove that either

(i) \(\forall m \in N \exists n \geq m \) such that \(d(x_n, p) \geq r \), or

(ii) \(\exists m \in N, x_m = p \).

[Argue that not (i) implies (ii)]

Conclude that \((x_n) \) cannot converge to \(p \) unless \(x_m = p \) for some \(m \).

Problem 11-2. Let \(f(x) = |2x - 1| \). Parts (c), (d) and (e) refer to sequences of iterates defined recursively by \(x_{n+1} = f(x_n), \ n \geq 0 \).

(a) Check that \(f \) is continuous and \(0 \leq x \leq 1 \) implies \(0 \leq f(x) \leq 1 \).

(b) Verify that \(f \) has fixed points \(1/3 \) and \(1 \) as a function \(f : [0,1] \to [0,1] \) .

(c) Find \(x_n \) for \(n = 1 \) through \(6 \) for the sequence with \(x_0 = 2/3 \). Repeat for the sequences with \(x_0 = 1/5 \) and \(x_0 = 1/7 \) .

(d) Use part (2) of Problem 10-1 to show that if a sequence of iterates converges to a fixed point \(p \), then \(x_m = p \) for some \(m \).

(e) Prove that if \(x_0 \) is a rational number then \(\exists m \in N \exists p \in N, n \geq m \Rightarrow x_n+p = x_n \). Sequences with the last property are called eventually periodic.

Definitions: (a) An interval \(I \) means any sort of real interval or ray; \([a,b], [a,b), (a,b], (a,b), [a, \infty), (a, \infty), (-\infty, b], (-\infty, \infty) = R \). Let \(I \) be an interval, \(f : I \to R \) a function and \(p \) be in the interior of \(I \).

(b) \(f \) is differentiable at \(c \) iff \(\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \) exists. The limit is the derivative of \(f \) at \(c \) and is denoted by \(f'(c) \).

(c) Equivalently, \(f \) is differentiable at \(c \) with derivative \(f'(c) \) iff

\[\forall \varepsilon > 0 \exists \delta > 0, 0 < |x - c| < \delta \Rightarrow \left| \frac{f(x) - f(c)}{x - c} - f'(c) \right| < \varepsilon \]

(d) \(f \) is differentiable on \(I \) iff \(f \) is differentiable at each point \(c \) in \(I \).
Problem 11-3. Let I be an interval, let \(f : I \to I \) be a function with fixed point \(p \), and assume that \(f \) is differentiable at \(p \).
1. If \(|f'(p)| < 1 \) then \(f \) has the property stated in part (1) of Problem 10-1.
2. If \(|f'(p)| > 1 \) then \(f \) has the property stated in part (2) of Problem 10-1.

Problem 11-4. Let \(S \) be a compact metric space. You know that if \(f : S \to S \) is a function with \(d(f(x), f(z)) < d(x, z) \) whenever \(x \neq z \), then \(f \) has a unique fixed point \(p \). Prove that for any \(x_0 \in S \), the sequence defined recursively by \(x_{n+1} = f(x_n), n \geq 0 \), converges to \(p \).

Problem 11-5. Let \(\alpha < 1 \) and \(f : \mathbb{R} \to \mathbb{R} \) be a Lipschitz function with \(|f(x) - f(z)| \leq \alpha |x - z| \) for all \(x \) and \(z \). Prove that if \(f(0) > 0 \) then \(f \) has a fixed point in the interval \((0, \frac{f(0)}{1 - \alpha}] \).

Problem 11-6. For a function \(f : S \to S \), define \(f^{[n]} : S \to S \) to be the composition of \(f \) with itself \(n \) times, i.e., by \(f^{[n]} = f \circ f \circ ... \circ f \). Prove that if \(\alpha = \text{Lip}(f^{[n]}) < 1 \) and \(p \) is the unique fixed point of \(f^{[n]} \), then \(p \) is also a fixed point of \(f \).