Problem Set Twelve: The Brouwer, Schauder and Peano Theorems

Definition: A function \(f : S \rightarrow T \) between metric spaces is a homeomorphism iff \(f \) is 1-1, onto, continuous and has a continuous inverse. Two spaces are homeomorphic \((S\sim T)\) iff there is a homeomorphism between them.

Theorem: If \(S \) is compact and \(f : S \rightarrow T \) is 1-1, onto, and continuous, then \(f \) is a homeomorphism.

Examples: The Cantor set \(C \) and \(\Delta \sim \Delta \) are homeomorphic; \(\Delta \sim \Delta \times \Delta \) and \(C \sim C \times C \); \([0,1]\) is not homeomorphic \([0,1]\times[0,1]\).

Example: In \(\mathbb{R}^n \) the closed unit balls in the Euclidean and box norms are homeomorphic. To write a homeomorphism \(f : CB(0,1) \rightarrow CB \) let \(f(0) = 0 \) and \(f(x) = \left\| x \right\|_{\infty}^{-1} x \) for \(x \neq 0 \).

Theorem: If \(S \) and \(T \) are homeomorphic and \(S \) has the fixed point property then so does \(T \).

Brouwer Fixed Point Theorem: For each \(n \geq 1 \) the closed unit ball in \(\mathbb{R}^n \) with Euclidean norm has the fixed point property.

Lemma: The standard simplex in \(\mathbb{R}^n \) is the set of \(n \)-tuples \(s = (t_1, t_2, \ldots, t_n) \) with each \(t_k \geq 0 \) and \(\sum_{k=1}^{n} t_k = 1 \). The standard simplex is homeomorphic to the closed unit ball in \(\mathbb{R}^{n-1} \).

Lemma (Partitions of Unity): If the open balls \(B(x_k, \varepsilon_k) \), \(1 \leq k \leq m \), cover the metric space \(S \), then there are \(m \) continuous functions \(f_k : S \rightarrow [0,1] \) so that

(i) for each \(k \) the function \(f_k = 0 \) on the complement of \(B(x_k, \varepsilon_k) \), and

(ii) \(\sum_{k=1}^{m} f_k(x) = 1 \) for all \(x \) in \(S \).

Lemma: If \(K \) is a convex subset of a vector space, \(x_1, x_2, \ldots, x_n \in K \), and \(s = (t_1, t_2, \ldots, t_n) \) is in the standard simplex, then \(\sum_{k=1}^{n} t_k x_k \in K \).

Schauder Fixed Point Theorem: Let \(E \) be a Banach space and \(K \subset E \) be a closed and convex. If \(T : K \rightarrow K \) is continuous and \(T(K) \) is totally bounded, then \(T \) has a fixed point.

Corollary: Any compact, convex set in a Banach space has the fixed point property.

Peano Theorem: Let \(U \subset \mathbb{R}^2 \) be an open set and \((a, b) \in U\). If \(f : U \rightarrow \mathbb{R} \) is continuous then there is an open interval containing \(a \) on which the initial value problem \(y'(x) = f(x, y(x)) \), \(y(a) = b \), has a solution.

Example: Uniqueness of solutions may fail. The initial value problem \(y' = 2^x \), \(y(0) = 0 \), has solutions \(y_1(x) = 0 \) and \(y_2(x) = x^2 \text{sign}(x) \).
Definitions: Let X be a metric space and Y be a subset of X. A continuous function $r : X \to Y$ is a retraction of X onto Y iff r is onto and $r(y) = y$ for all y in Y. Y is a retract of X iff there is a retraction from X onto Y. For example each interval $[a,b]$ is a retract of the reals \mathbb{R} and $r(x) = \max\{a, \min\{x, b\}\}$ is a retraction from \mathbb{R} onto $[a,b]$.

Problem 12-1: (a) If Y is a retract of X and X has the fixed point property, then so does Y.
(b) $\{x \in \mathbb{R}^n : \|x\| = 1\}$ is not a retract of the unit ball $\{x \in \mathbb{R}^n : \|x\| \leq 1\}$. (Hint; use Brouwer Theorem.)

Problem 12-2: In each case prove there is a retraction $r : X \to Y$ with the indicated Lipschitz norm:
(a) $X = C(S)$, $Y = CB(f, \varepsilon)$ any closed ball in $C(S)$, $\text{Lip}(r) \leq 1$;
(b) $X = \mathbb{R}^n$ with Euclidean norm, $Y = CB(x, \varepsilon)$ any closed ball in \mathbb{R}^n, $\text{Lip}(r) \leq 1$;
(c) X any normed space, Y any closed ball in X, $\text{Lip}(r) \leq 3$.

Problem 12-3: Prove the indicated facts.
(a) The Cantor set does not have the fixed point property.
(b) The Hilbert Cube has the fixed point property. (Hint; use Brouwer Theorem)
(c) The closed unit ball $CB(0,1)$ in $C(S)$ does not have the fixed point property.