Problem Set Thirteen; The Baire Category Theorem

Definitions: Let (S,d) be a metric space. Recall a set $U \subseteq S$ is open iff for each $x \in U$ there is an open ball $B(x,r)$ so that $B(x,r) \subseteq U$. A subset F of S is closed iff its complement $F^c = S \setminus F$ is an open set.

Theorem: (1) The union of any collection of open sets is open.
(2) The intersection of any finite number of open sets is open.
(3) If $f : S \to T$ is continuous and $U \subseteq T$ is open then $f^{-1}(U) = \{ x \in S : f(x) \in U \}$ is open in S.

Corollary: (1) The intersection of any collection of closed sets is closed.
(2) The union of any finite number of closed sets is closed.
(3) If $f : S \to T$ is continuous and $F \subseteq T$ is closed then $f^{-1}(F) = \{ x \in S : f(x) \in F \}$ is closed in S.

Definition: The diameter of a bounded set M in a metric space is $\text{diam}(M) = \sup \{ d(x,y) : x \& y \in M \}$.

Notice that a closed ball $CB(x,r)$ has diameter at most $2r$.

Theorem: Let S be a complete metric space and (F_n) be a sequence of subsets of S. If
(i) each F_n is a non-empty closed set,
(ii) $\text{diam}(F_n) \to 0$, and
(iii) $F_m \subseteq F_n$ for each pair of indices $m \geq n$

then there is a unique point in $\bigcap_{n=1}^{\infty} F_n$.

Definition: A set D in a metric space is dense iff $D \cap V \neq \emptyset$ for every non-empty open set V.

Baire’s Theorem: If S is a complete metric space and (U_n) is a sequence of open, dense subsets of S, then $\bigcap_{n=1}^{\infty} U_n$ is dense.

Definitions: Let (S,d) be a metric space and A, B, and C denote subsets of S.
(a) A is nowhere dense iff every open set U contains an open set V with $V \cap S = \emptyset$.
(b) B is an F_σ-set iff B is the union of a countable number of closed sets.
(c) C is a G_δ-set iff C is the intersection of a countable collection of open sets.

Baire’s Theorem Restated: If S is a complete metric space and $S = \bigcup_{n=1}^{\infty} F_n$ is the union of a countable collection of closed sets, then at least one of the sets F_n contains an open ball. Put another way, a complete metric space cannot be the union of a sequence of closed, nowhere dense sets.

Corollary: The set of rational numbers in $[a,b]$ is an F_σ-set but the set of irrational numbers in $[a,b]$ is not an F_σ-set.

Notation: For a function $f : S \to T$ write $D(f)$ for the set of points in S at which f is discontinuous.
Theorem: For any function \(f : [a, b] \to \mathbb{R} \), \(D(f) \) is an \(F_\sigma \) set.

Corollary: There is no \(f : [0,1] \to \mathbb{R} \) with \(D(f) \) the set of irrationals in \([0,1]\).

Example: Let \(E \) be a countable subset of \([0,1]\) enumerated in some way as \(E = \{ x_n \}_{n \geq 1} \). If \(f(x) = 0 \) for \(x \notin E \) and \(f(x_n) = 1/n \) for each \(n \), then \(D(f) = E \).

Theorem: If \(f_n : [a, b] \to \mathbb{R} \) is a sequence of continuous functions which converges pointwise to \(f \), then \(f \) has a point of continuity in \([a,b]\).

Corollary: If \(f : [a, b] \to \mathbb{R} \) is the pointwise limit on \([a,b]\) of a sequence of continuous functions, then \(\{ x \in [a, b] : f \text{ is continuous at } x \} \) is an uncountable, dense \(G_\delta \) set.

PROBLEMS

Problem 13-1. If \(S \) is a countable and complete metric space then some singleton in \(S \) is an open set.

Problem 13-2. If \(S \) is a complete metric space and \(f_n : S \to \mathbb{R} \) is a pointwise bounded sequence of continuous functions then \((f_n) \) is uniformly bounded on some open ball in \(S \).

Problem 13-3. In a metric space each compact set is a \(G_\delta \) set.

Problem 13-4 (see Rudin, Remark 4.31, p 97). Let \(E \) be a countable subset of \((0,1)\) enumerated in some way as \(E = \{ x_n \}_{n \geq 1} \). For each \(x \) in \((0,1)\) write \(I(x) = \{ n : x_n < x \} \). Define \(f \) on \((0,1)\) by \(f(x) = 0 \) if \(I(x) \) is empty and \(f(x) = \sum_{n \in I(x)} 2^{-n} \) otherwise. Prove that \(f \) is monotone increasing on \((0,1)\) and \(D(f) = E \).

Problem 13-5. If \(U = (a,b) \) is an interval on the real line, there is a metric \(d(x,y) \) on \(U \) with these properties. (1) \(U \) is complete under \(d \). (2) A sequence \((x_n) \) converges in \(d \)-metric to a point \(p \) in \(U \) iff it converges to \(p \) in the usual sense. (3) The \(d \)-closed sets are the same as the usual closed sets. (4) The \(d \)-open sets are the same as the usual open sets. (5) Baire's Theorem is true in \(U \) with the usual metric.